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ME 301  Kinematics  &  Dynamics of Machines 
 

Introduction 
 
Kinematics: 
 
 
 
Kinema - Greek for motion 
 
 
Dynamics: 
 
 
Rigid Body Mechanics Diagram: 
 
 
 
 
 
 
 
Required Math: Geometry, trigonometry, vectors, matrices, calculus 
 
Mechanisms:  linkages, cams, gears, gear trains 
 
Analysis vs. Synthesis 
• Analysis – determination of position, velocity, acceleration, etc. 

for a given mechanism 
• Synthesis – design of mechanism to do a specific job 
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Mobility - number of degrees-of-freedom (dof): 
 
 
 
• Structure – static, no motion 
• Mechanism – 1 dof device with rigid links connected with joints 
• Machine – collection of mechanisms to transmit force (input / 

output) 
• Robot – an electromechanical device having greater than 1 dof, 

programmable for a variety of tasks. 
 
 
Motion – Translation and Rotation 
 
 
 
Planar – all motion is 2D (projected onto a common plane) 
 
 
 
Helical - rotation about fixed axis and translation along axis - screw 
 
 
 
Spherical - 3D motion; all points in a body moves about a fixed point 
 
 
 
Spatial - 3 independent translations and rotations 
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Joints – Pairing elements  
 Lower – surface contact 
  Revolute – pin joint, turning pair 
 
 
  Prismatic – sliding pair 
 
 
 Higher – point or line contact 
  ball bearing 
 
 

gears 
 
 
cam and follower 
 

 
Link – rigid body 
 
 
Kinematic chain – number of links connected by joints 
 open – serial robot 
 closed – mechanism, parallel robot 
 
 
Kinematic Inversion – change which link is fixed – same relative 
motion, different absolute motion. 
 
 
 
Examples – in class; also see following Atlas 
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A Brief Atlas of Structures, Mechanisms, and Robots 
Dr. Bob 

 

  
Statically Determinate Structure  Statically Indeterminate Structure 

 
 

  
4-Bar Mechanism       Offset Slider-Crank Mechanism 

 
 

  
Inverted Slider-Crank Mechanism     Scotch-Yoke Mechanism 
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Geared 5-Bar Mechanism  Stephenson I 6-Bar Mechanism 

 

    
Stephenson II 6-Bar Mechanism      Stephenson III 6-Bar Mechanism 

 

    
Watt I 6-Bar Mechanism   Watt II 6-Bar Mechanism 
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Spur Gear Mechanism     Cam-and-Follower Mechanism 

 

     
Geneva Wheel Mechanism   Planar 3-dof Robot 

 

    
Adept 4-dof SCARA Robot   Mitsubishi 5-dof Robot 
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PUMA 6-dof Robot   NASA 8-dof ARMII 

 

  
2-dof 5-Bar Parallel Robot  3-dof  3-RRR Parallel Robot 

 

  
3-dof  3-RPR Parallel Robot   3-dof Carpal Wrist 
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Connection to Machine Design 
 
In ME 301 we focus on kinematics & dynamics analysis, not 
synthesis (design). 
 
However, the skills gained in this course support general 
(electro)mechanical design. 
 
Before one can design a machine, the required motion must be 
satisfied.  All design candidates must be analyzed regarding the 
motion each would provide (position, velocity, and acceleration, both 
translational and rotational).  This requires kinematics analysis. 
 
Before one can size the links, joints, bearings, gear box, and actuators 
(motors) in a machine, the worst-case force and moment loading 
condition(s) must be known, for statics and dynamics.  This requires 
dynamics analysis. 
 
Engineering design is iterative by nature: each candidate design must 
be thoroughly analyzed to determine its performance relative to the 
design specifications and relative to other design candidates. 
 
This kinematics & dynamics analysis is facilitated using a computer.  
Without the computer, it is difficult to determine the worst-case 
loading cases, and over-designed factors of safety may be 
inefficiently applied. 
 
The goal of ME 301 is to give the student general skills in general 
matrix/vector-based kinematics and dynamics analysis which may be 
applied in later classes and later careers. 
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Matrix-Vector Introduction 
Vectors 
 
 Arrow in the plane with magnitude and direction.  Used to 
represent position, velocity, acceleration, force.  Also, arrow normal 
to the plane to represent angular velocity, angular acceleration, and 
torque (moment) vectors (see later in notes). 
 
 
 
 
 
 
 
 
 
 
Cartesian representation: 
 
 
 
 
 
 
 
 
Polar representation:  Magnitude at angle: θ@P  

 
 
 
 
 
 

(atan2 - quadrant-specific inverse tangent function) 
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Vector Addition 
 
 Vectors add tail-to-head (subtract head-to-tail); express 
components in same coordinate frame. 
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Vector Dot Product 
 
 Dot product is projection of one vector onto another.  Scalar 
result. 
 
 
 
 
 
 
 
 
 
 



 14

Vector Cross Product 
 
 Cross product of two vectors gives a third vector mutually 
perpendicular to the original two vectors.  Vector result. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 Direction via right-hand-rule:  Put right hand fingers along first 
vector 1P , rotate into second vector 2P ; right thumb is direction of 

21 PP × . 
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k̂ Vectors 
 
 In planar kinematics, angular velocity, angular acceleration, and 
torque (moment) vectors are arrows along about the k̂  axis (the unit 
direction for the Z axis, perpendicular to the plane).  Still has 
magnitude and direction, but simplifies to a single component with ±  
sign.  We will often represent these k̂  vectors by curled arrows in the 
XY plane. 
 
 
 
 
Example: 
 
 
 
 
 
 
 
 
 
 
 
 

k̂ωω ±= ;  
 
+ ccw (curling in the direction of the right hand fingers) 
– cw   (curling in the opposite direction of the right hand fingers) 
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Vector Examples 
 









=
2
1

1P   








=
2
3

2P  

 
 
 
 
Addition:  =+ 21 PP  
 
 
 
 
 
Dot Product:  =• 21 PP  
 
 
 
 
 
Cross Product: =× 21 PP  
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Matrices 
 
 Matrix:  m x n array of numbers, where m is the number of rows 
and n in the number of columns.  
 

[ ]

11 12 1

21 22 2

1 2

n

n

m m mn

a a a
a a a

A

a a a

 
 
 =
 
 
 

 

 
Used to simplify and standardize the solution of n linear equations in 
n unknowns (where m=n).  Used in velocity, acceleration, and 
dynamics analysis linear equations (not used in position which is a 
non-linear solution). 
  
Special Matrices 
 

 Square (m=n=3) [ ]
11 12 13

21 22 23

31 32 33

a a a
A a a a

a a a

 
 =  
  

 

 

 Diagonal    [ ]
11

22

33

0 0
0 0
0 0

a
A a

a

 
 =  
  

 

 

 Identity    [ ]
1 0 0
0 1 0
0 0 1

I
 
 =  
  
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 Transpose   [ ]
11 21 31

12 22 32

13 23 33

T
a a a

A a a a
a a a

 
 =  
  

 

 

 Symmetric  [ ] [ ]
11 12 13

12 22 23

13 23 33

T
a a a

A A a a a
a a a

 
 = =  
  

 

 

 Column Vector (3x1 matrix) { }
1

2

3

x
X x

x

 
 =  
  

 

 
 Row Vector (1x3 matrix) { } { }1 2 3

TX x x x=  
 

 
 
Matrix Addition  Just add up like terms 
 

a b e f a e b f
c d g h c g d h

+ +     
+ =     + +     

 

 
 
Matrix Multiplication with Scalar  Just multiply each term 
 

a b ka kb
k

c d kc kd
   

=   
   
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Matrix Multiplication  [ ] [ ][ ] [ ][ ]C A B B A= ≠  
 
Row, Column indices have to line up as follows: 
 

[ ] [ ][ ]
( ) ( )( )
C A B

mxn mxp pxn

=

≡
 

 
That is, the number of columns in the left-hand matrix must equal the 
number of rows in the right-hand matrix; if not, the multiplication is 
undefined and cannot be done!  Multiplication proceeds by 
multiplying and adding terms along the rows of the left-hand matrix 
and down the columns of the right-hand matrix:  (use your index 
fingers from the left and right hands): 
 

Example:  
[ ]

( ) ( )( )2 1 2 3 3 1

g
a b c ag bh ci

C h
d e f dg eh fi

i

x x x

 
+ +    = =     + +     

≡

  

 
note the inner indices (p=3) must match, as stated above and the 
dimension of the result is the outer indices, i.e. 2x1. 
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Matrix Multiplication Examples 
 

[ ]
1 2 3
4 5 6

A  
=  
 

  [ ]
7 8
9 8
7 6

B
 
 =  
  

 

 
 
[ ] [ ][ ]

7 8
1 2 3

9 8
4 5 6

7 6

7 18 21 8 16 18 46 42
28 45 42 32 40 36 115 108

C A B=

 
   =        

+ + + +   
= =   + + + +   

 

( ) ( )( )2 2 2 3 3 2x x x≡  
 
 
[ ] [ ][ ]

7 8
1 2 3

9 8
4 5 6

7 6

7 32 14 40 21 48 39 54 69
9 32 18 40 27 48 41 58 75
7 24 14 30 21 36 31 44 57

D B A=

 
  =       

+ + +   
   = + + + =   
+ + +      

 

( ) ( )( )3 3 3 2 2 3x x x≡  
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Matrix Inversion 
 
 Matrix “division”: given [ ] [ ][ ]C A B= , solve for [B] 
 
[ ] [ ][ ]C A B= ⇒  

[ ] [ ] [ ] [ ][ ]
[ ][ ]
[ ]

1 1A C A A B

I B

B

− −=

=

=

 

[ ] [ ] [ ]1B A C−⇒ =  
 
Matrix [A] must be square to invert. 
 

[ ][ ] [ ] [ ] [ ]1 1A A A A I− −= =  
 

where [I] is the identity matrix, the matrix “1”.  To calculate the 
matrix inverse: 
 

[ ] ( )1 Adjoint A
A

A
−   =  

 
where: A    Determinant of [A] 
 
  ( ) ( )Adjoint Cofactor TA A=        
 
  Cofactor(A) ( )1 i j

ij ija M+= −  
 

Minor ijM  is the determinant of the submatrix with row i 
and column j removed. 
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System of Linear Equations  
 
 We can solve n linear equations in n unknowns with the help of 
a matrix.  For n=3: 
 

11 1 12 2 13 3 1

21 1 22 2 23 3 2

31 1 32 2 33 3 3

a x a x a x b
a x a x a x b
a x a x a x b

+ + =

+ + =

+ + =

 

 
Using matrix multiplication (backwards), this is written as: 
 

[ ]{ } { }A x b=  
 
where: 

   [ ]
11 12 13

21 22 23

31 32 33

a a a
A a a a

a a a

 
 =  
  

 (known coefficients) 

 

   { }
1

2

3

x
x x

x

 
 =  
  

   (unknowns to be solved)   

 

   { }
1

2

3

b
b b

b

 
 =  
  

   (known right-hand sides) 

 
Unique solution { } [ ] { }1x A b−=  only if [A] has full rank.  If not, 

0A =  and the inverse of matrix [A] is undefined (dividing by zero). 
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Matrix Example 
 
Solution of simultaneous linear equations. 
 

1 2

1 2

2 5
6 4 14

x x
x x
+ =
+ =

  ⇒   








=















14
5

46
21

2

1
x
x

 

 
 

[ ] 







=

46
21

A   { }








=
2

1
x
x

x   { }








=
14
5

b  

 
{ } [ ] { }bAx 1−=  
 

( ) ( ) 86241 −=−=A  Determinant non-zero; unique solution! 
 

[ ] 







−

−
=








−

−
=−

8/14/3
4/12/1

16
2411

A
A  

 

check: [ ][ ] [ ] [ ] [ ] 







=== −−

10
01

2
11 IAAAA  

 









=















−

−
=









2
1

14
5

8/14/3
4/12/1

2

1
x
x

  Answer. 

 
check: Plug answer into original equations and compare to the 

{b} we need to get. 
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Vector and Matrix Matlab Examples 
 
P1 = [1;2;0];   % Define two vectors 
P2 = [3;2;0]; 
sum1 = P1+P2;   % Vector addition 
sum2 = P2+P1; 
dot1 = dot(P1,P2);  % Vector dot product 
dot2 = dot(P2,P1); 
cross1 = cross(P1,P2); % Vector cross product 
cross2 = cross(P2,P1); 
 
 
A = [1  2;6  4];  % Define a matrix and vector 
b = [5;14]; 
dA = det(A);   % Calculate determinant of A 
invA = inv(A);   % Calculate the inverse of A 
x = invA*b;    % Solve linear equations 
x1 = x(1);    % Extract answers 
x2 = x(2); 
A*x      % Check answer – should be b 
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Matlab Introduction 
 
Matrix laboratory 
 
 Control systems simulation and design software.  Very 
widespread in other fields.  Introduction to basics, programming, 
plots, animation, matrices, vectors.  Based on C language, 
programming is vaguely C-like, but much simpler to use.  Sold by 
Mathworks (http://www.mathworks.com). 
 
 Can buy student version software and manual for about the price 
of one textbook (can use it for many classes!).  ENT college has a 
Matlab license; it is installed in most computer labs. 
 
Double-click on Matlab icon to get started.  Type  
 
>>demo  
 
to get a comprehensive overview of Matlab including built-in 
functions.  Try all the categories under Matlab first; you can ignore 
Toolboxes, Simulink, and Stateflow for now.  (Exception: there is 
Symbolic Math under Toolboxes for the adventurous student!). 
 
 Type in commands (such as the Vector/Matrix examples given 
earlier) at the Matlab prompt >>.  Press <Enter> to see result or   ; 
<Enter> to suppress result. 
 
 Recommended operation mode: m-files.  Put your sequence of 
Matlab statements in an ASCII file name.m (create a file with the 
beautiful Matlab Editor/Debugger - this is color-coordinated, tab-
friendly, with parentheses alignment help and debugging 
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capabilities).  A % indicates a comment.  One basic way to run your 
program is to hit the ‘save and run’ button on the editor toolbar. 
 
Alternative: at the >> prompt type the M-File name name, without 
the .m, assuming your file is in the search path.  Matlab language is 
interpretive and executes line-by-line.  Use the ; at the end of 
statements to suppress intermediate results.  If you use this 
suppression, the variable name still holds the resulting value(s) – just 
type the variable name at the prompt after the program runs to see the 
value(s).  If there is a syntax or programming logic error, it will give 
a message at the bad line and then quit.  Type: 
 
>>who  
 
to show you what variables you have defined;  
 
>>whos  
 
will show the variables, plus their matrix dimensions (scalar, vector 
array, or matrix), very useful for debugging.  Plus, after running a 
file, place the cursor over different variables in the M-File inside the 
Editor/Debugger to see the values!  On-line help is generally great: 
 
>>help 
 
Example m-files (given on the following two pages) 
 
1)  MatEx1.m:  Input, programming, plots, animation. 
 
2) MatEx2.m: Matrix and vector definition, multiplication, transpose, 
and solution of linear equations. 
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%--------------------------------------------------------------- 
% Matlab Example Code 1:  MatEx1.m 
%  Matrix, Vector examples 
%   Dr. Bob, ME 301 
%--------------------------------------------------------------- 
 
clc; clear;  %  Clear the cursor and clear any previously defined variables 
 
 
% 
% Matrix and Vector definition, multiplication, and transpose 
% 
 
A1  = [1  2 3; ... %  Define 2x3 matrix [A1] (... is continuation line) 
       1 -1 1]; 
x1  = [1;2;3];   %  Define 3x1 vector {x1} 
 
v  = A1*x1;    %  2x1 vector {v} is the product of [A1] times {x1} 
 
A1T = A1';    %  Transpose of matrix [A1] 
vT = v';     %  Transpose of vector {v} 
 
 
% 
% Solution of linear equations Ax=b 
% 
 
A2    = [1  2  3; ... %  Define matrix [A2] to be a 3x3 coefficient matrix 
         1 -1  1; ... 
         8  2 10]; 
 
b     = [3;2;1];  %  Define right-hand side vector of knowns {b} 
 
detA2  = det(A2);  %  First check to see if det(A) is near zero 
 
x2     = inv(A2)*b; %  Calculate {x2} to be the solution of Ax=b by inversion 
 
check = A2*x2;   %  Check results; 
 
z     = b - check; %  Better be zero! 
 
 
% 
% Display the user-created variables (who), with dimensions (whos) 
% 
 
who 
whos 
 
 
% 
% Display some of the results 
% 
 
v 
x2 
z 
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%--------------------------------------------------------------- 
% Matlab Example Code 2:  MatEx2.m 
%  Menu, Input, FOR loop, IF logic, Animation, and Plotting 
%   Dr. Bob, ME 301 
%--------------------------------------------------------------- 
 
clc;  clear; %  Clear the cursor and clear any previously defined variables  
 
r  = 1;  L  = 2;  DR = pi/180;       % Constants 
 
% 
% Input 
% 
anim = menu('Animate Single Link?','Yes','No')  %  Menu to screen 
the = input('Enter [th0, dth, thf] (deg):  ')  %  User types input 
th0 = the(1)*DR; dth = the(2)*DR; thf = the(3)*DR; %  Initial, delta, final thetas 
th  = [th0:dth:thf];           %  Assign theta array 
N   = (thf-th0)/dth + 1;         %  Number of iterations for loop  
 
% 
% Animate single link 
% 
if anim == 1             %  Animate if user wants to 
 figure;              %  Give a blank graphics window 
   for i = 1:N;            %  For loop to animate 
  x2 = [0  L*cos(th(i))];       %  Single link coordinates 
  y2 = [0  L*sin(th(i))]; 
  plot(x2,y2); grid;         %  Animate to screen 
      set(gca,'FontSize',18); 
      xlabel('\itX (\itm)'); ylabel('\itY (\itm)');   
  axis('square'); axis([-2 2 -2 2]);    %  Define square plot limits 
    pause(1/4);            %  Pause to see animation 
    if i==1             %  Pause to maximize window 
       pause;            %  User hits Enter to continue 
    end 
   end 
end 
 
% 
% Calculate circle coordinates and cosine function 
% 
xc = r*cos(th);          %  Circle coordinates 
yc = r*sin(th); 
f1 = cos(th);           %  Cosine function of theta 
f2 = sin(th);           %   Sine  function of theta 
 
% 
% plots 
% 
figure;             %  Co-plot cosine and sine functions 
plot(th/DR,f1,'r',th/DR,f2,'g'); grid; set(gca,'FontSize',18);  
legend('Cosine','Sine'); 
axis([0 360 -1 1]); title('Functions of \it\theta'); 
xlabel('\it\theta (\itdeg)'); ylabel('Functions of \it\theta'); 
 
figure;             %  Plot circle 
plot(xc,yc,'b'); grid; set(gca,'FontSize',18); 
axis(['square']); axis([-1.5 1.5 -1.5 1.5]); title('Circle'); 
xlabel('\itX (\itm)'); ylabel('\itY (\itm)'); 
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Mobility 
 
Mobility: 
 
 
Degrees-of-freedom (dof): 
 
 
How many dofs does an unconstrained planar link have? 
 
 
What is the effect of constraining that link with a revolute joint?  
 
 
 
 
 
 
 
 
 
Grubler's Criterion:  Planar Jointed Devices 
 
 
 
 
 
Where: M is the mobility 
  N is the total # of links, including ground 
  J1 is the number of one-degree-of-freedom joints 
  J2 is the number of two-degree-of-freedom joints 
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One-degree-of-freedom joints:  
 
 Revolute 
 
 Prismatic 
 
 
Two-degree-of-freedom joints (all have rolling and sliding): 
 
 Cam joint 
 
 Gear joint 
 
 Slotted-pin joint 
 
 
Caution:  m links joining at one revolute location, must count m-1 
joints! 
 
Caution: must count ground link (its freedom is subtracted in formula 
with n-1. 
 
Planar mechanical device classification: 
 

1>M  
 

1=M  
 

0=M  
 

0<M  
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Planar Mobility Examples: 

1)  3-link serial robot   
 
 
 

2)  4-bar linkage     
 
 

3)  Slider-crank linkage    
 
 

4) Scotch Yoke mechanism      
 
 
 

5) Cam and follower       
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6) Gear pair         
 
 
 
 

7)  4-bar linkage with parallel link   
 
 

8)  Watt 6-bar linkage       
  
 
 
 

9)  Statically-determinate structure    
 
 

10)  Statically-indeterminate structure   
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11)  5-bar linkage        
 
 

12)  Geared 5-bar linkage      
 
 
 

13)  Cam-modulated 4-bar linkage    
 
 

14)  3-RRR parallel robot     
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Four-Bar Mechanism Position Analysis 
 
Position (Displacement) Analysis: determination of relative 
orientation/ position of links in a mechanism. Required for testing 
motion of a synthesized mechanism.  Also required for further 
analysis: velocity, acceleration, dynamics, forces. 
 
Generic Mechanism Position Analysis Statement: Given the 
mechanism and one dof of position input, calculate the position 
unknowns. 
 
Four-bar Mechanism Position Analysis 
 
Step 1.  Draw the Kinematic Diagram: 
 
 
 
 
 
 
 
 
 
 
 
r1 –  fixed ground link   θ1 – ground link angle  
r2 –  input link     θ2 – input angle 
r3 –  coupler link    θ3 – coupler angle 
r4 –  output link    θ4 – output angle 
All angles measured in right-hand sense from horizontal to link. 
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Step 2.  State the problem: 
 
 
 
 
Step 3.  Draw the Vector Diagram.  Define all angles in positive 
sense, measured from the right horizontal to the link vector (tail-to-
head).  Don’t try to force acute angles; the relationships we can see so 
easily in the first quadrant hold for all four quadrants: 









=
θ
θ

sin
cos

L
L

P  ;  good for all θ . 

Vector Diagram:  
 
 
 
 
 
 
 
 
 
 
Step 4.  Derive the Vector-Loop-Closure Equation. Start at one 
point, add vectors tail-to-head until reach a second point.  Write 
equation by starting and ending at same points, but choosing a 
different path. 
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Step 5.  Write XY Components for Vector-Loop-Closure Equation.  
Break one vector equation into its two scalar components (X and Y): 
 
 
 
 
 
 
 
Step 6. Solve for the Unknowns from the XY Equations.  Two 
coupled nonlinear equations in the two unknowns 43,θθ .  Isolate and 
eliminate 3θ  and solve for 4θ .  Then go back to find 3θ . 
 
Square and add: 

 
 
 
 
 
 
 
 
 
 
 
 



 37

This equation has the form: 
 
 
 
 

Solve using the tangent half angle substitution (Text Equation 4.9): 
 







=

2
tan 4θt   2

2
4

1
1cos

t
t

+

−
=θ   24

1
2sin

t
t

+
=θ  

 
 
 
 
 

 We converted a complicated coupled transcendental set of 
equations into a quadratic polynomial.  Much easier to solve (but we 
doubled the order of the equation!). 
 

 
 
 
 
 
 
 

Two solutions for 4θ : 
 
 
 



 38

With factor two, no need to use the atan2 function. 
 
Why two solutions? (Graphically demonstrate the two branches.) 
 
 
 
 
 
 
 What if  0222 <−+ GFE ?  Imaginary solution, physically 
means the mechanism cannot assemble for that input angle.  See 
section on Grashof's Law. 
 
 
 
 
 
 
Go back to find 3θ , one for each solution branch.  Go back to original 
two XY scalar equations. 
 
 
Use ratio of Y to X equations: 

 
 
 

Show graphical interpretation: 







−
−

= −

XX

YY
AB
AB1

3 tanθ  
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The basic four-bar mechanism position analysis problem is now 
solved.  Now that we know the angular unknowns, we can find the 
translational position of any point on the mechanism, e.g. coupler 
point C: 
 
 
 
 
 
 
 
 
 
 
 
Four-bar mechanism transmission angle: Transmission angle µ : 
relative angle between coupler and output links.  Measure of 
mechanical advantage of mechanism; 90o is ideal; 0,180o zero 
transmission; as a rule of thumb, the absolute value of µ  should 
remain in the range 14040 << µ  for good transmission in a 
mechanism.  By geometry: 
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Four-Bar Mechanism Position Analysis: Term Example 1 
 

Given  

7
8
3

18.11

4

3

2

1

=
=
=
=

r
r
r
r

 in   

1

2

3

4

0.284
0.076
0.203
0.178

r
r
r
r

=
=
=

=

 m 

 
and 3.101 =θ  (Ground link is 11" over and 2" up).  Also given 

5/ =ACR  (in) and 9.363 =δ  for the coupler link point of interest. 
 
 
Snapshot Analysis (one input angle) 
 
Given this mechanism and 302 =θ , calculate µθθ ,, 43 , and CP  for 
both branches.  Results: 
 

0.076
0.005
0.036

E
F
G

=
=
=

 

 
 

Branch t 3θ  4θ  µ  CP  
Open  1.79 8.53  7.121  9.67  0.06, 0.16

Crossed -1.57 0.47−  9.114−  9.67  0.19, 0.02
 
 

These two branch solutions are demonstrated in the figures on the 
following page.  We use the SI system (m).  Note µ  is identical for 
both branches due to the conventions presented earlier. 
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4-bar Example Snapshot, Open Branch 
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4-bar Example Snapshot, Crossed Branch 
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Graphical Solution:  The 4-bar position analysis may be solved 
graphically, merely by drawing the mechanism and determining the 
mechanism closure.  This is an excellent method to validate your 
computer results at a given snapshot. 
 
• Draw the known ground link (points O2 and O4). 
• Draw the given input link 2 length at the given angle (point A). 
• Draw a circle of radius r3, centered at point A. 
• Draw a circle of radius r4, centered at point O4. 
• These circles intersect in general in two places. 
• Connect the two branches and measure the unknown values. 

 
Graphical Solution Figure: 
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4-bar Snapshot Matlab code:   
This program solves the 4-bar position analysis problem for both 
branches given a single 2θ .   The results are drawn to the screen. 
 
%------------------------------------------------------------- 
% 4-bar linkage snapshot position analysis - both branches 
%  Fbarplec.m, with graphical output,  Dr. Bob, ME 301 
%------------------------------------------------------------- 
clc; clear;  %  Clear cursor and clear previously defined variables 
 
% Inputs 
DR = pi/180; 
R = input('Enter [r1, r2, r3, r4, rca, th1, th2, del3] (m and deg):  '); 
r1 = R(1); r2 = R(2); r3 = R(3); r4 = R(4); rca = R(5); 
th1 = R(6)*DR; th2 = R(7)*DR; del3 = R(8)*DR;  %  Change degrees to radians 
r1x = r1*cos(th1); r1y = r1*sin(th1); 
 
% Position analysis:  theta4 
E =  2*r4*(r1*cos(th1) - r2*cos(th2)); 
F =  2*r4*(r1*sin(th1) - r2*sin(th2)); 
G =  r1^2 + r2^2 - r3^2 + r4^2 - 2*r1*r2*cos(th1-th2); 
t(1) = (-F + sqrt(E^2 + F^2 - G^2)) / (G-E);   %  Crossed Branch 
t(2) = (-F - sqrt(E^2 + F^2 - G^2)) / (G-E);   %   Open   Branch 
th4(1) = 2*atan(t(1)); 
th4(2) = 2*atan(t(2)); 
 
% th3, coupler point, transmission angle; calculate for both branches 
for i = 1:2, 
 ax = r2*cos(th2);      %  theta3 
 ay = r2*sin(th2); 
 bx = r4*cos(th4(i)) + r1x; 
 by = r4*sin(th4(i)) + r1y; 
   th3(i) = atan2(by-ay,bx-ax); 
 bet = th3(i) + del3;     %  coupler point 
 pcx(i) = r2*cos(th2) + rca*cos(bet); 
 pcy(i) = r2*sin(th2) + rca*sin(bet); 
   mu(i) = abs(th4(i)-th3(i));  %  transmission angle 
end 
 
%  Plot 4-bar position results 
for i = 1:2, 
   x2 = [0            r2*cos(th2)];      %  Coords of link 2 
 y2 = [0            r2*sin(th2)]; 
 x3 = [r2*cos(th2)  r1x+r4*cos(th4(i)) pcx(i)]; %  Coords of link 3 
   y3 = [r2*sin(th2)  r1y+r4*sin(th4(i)) pcy(i)]; 
   x4 = [r1x          r1x+r4*cos(th4(i))];   %  Coords of link 4 
 y4 = [r1y          r1y+r4*sin(th4(i))]; 
   figure; 
 plot(x2,y2,'r',x4,y4,'r'); patch(x3,y3,'r'); 
   axis('square'); set(gca,'FontSize',18); 
   xlabel('\itX (\itm)'); ylabel('\itY (\itm)'); 
   axis([-0.1 0.3 -0.15 0.25]); grid; 
end 
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Full-Range-Of-Motion (F.R.O.M.) Analysis 
 
 A more meaningful result from position analysis is to report the 
position analysis unknowns for the entire range of mechanism 
motion.  The first plot gives 3θ  (red), 4θ  (green), and µ  (blue), all 
deg, for all 3600 2 ≤≤θ , for Term Example 1, open branch only.  
The second plot gives the coupler point location for this branch, 
plotting CYP  vs. CXP . 
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4-bar Example Snapshot, Open Branch Coupler Curve 
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Trigonometric Uncertainty 
 
Return to 3θ  solution: XY scalar equations: 
 

22441133

22441133
srsrsrsr
crcrcrcr

−+=
−+=

 

 
Since 4θ  has been solved, why not calculate 3θ  using Y equation?: 
 
 
 
e.g. ( )5.0sin 1

3
−=θ ;  figure: 

 
 
 
 
 
Problem: inverse sine function is double-valued; for each 4θ  there 
are two possible solutions, only one of which is correct!  Why not 
calculate 3θ  using X equation?  Inverse cosine has a similar problem;  
 

e.g. 




= −

2
3cos 1

3θ ;  figure: 

 
 
 
 
 
Problem: inverse cosine function is double-valued; for each 4θ  there 
are two possible solutions, only one of which is correct! 
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So we must use information from both sine and cosine (i.e. both X 
and Y equations) - this suggests using the tangent (as we did earlier in 
the 3θ  solution): 
 









−+
−+

= −

224411

2244111
3 tan

crcrcr
srsrsrθ  

 

e.g. 




= −

3
1tan 1

3θ ;  figure: 

 
 
 
 
 
Problem: the plain atan inverse tangent function is still double-
valued!; for each 4θ  there are two possible solutions, only one of 
which is correct!  Solution: use the quadrant-specific inverse 
tangent function atan2.  Input to this function is both a numerator and 
denominator; the function has built-in logic to determine the correct 
quadrant for the angle answer, given the signs ±  of the numerator 
and denominator.  The plain atan function takes a single quotient 
input; hence this sign information is lost and the true quadrant is 
unknown.  No uncertainty with atan2: 

e.g. =







++=

2
3,

2
12tan3 aθ  

=







−−=

2
3,

2
12tan3 aθ  

 
( )2244112244113 ,2tan crcrcrsrsrsrA −+−+=θ  
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Now, having just cleared up this Trigonometric Uncertainty, we 
already have an exception in the 4θ  tangent half-angle solution: 
 

( )t1
4 tan2 −=θ  

 
(there are two branches, one for each t value; only showing one here.) 
 
With the 2 multiplying the inverse tangent result, it doesn't matter 
whether we use atan or atan2 since the final answer will come to the 
same angle.  Example: 
 
 

For 




= −

3
1tan

2
14θ , from before, we don't know if the solution is  

 

  30
2
4 =

θ  or 

  210
2
4 =

θ  

 
However, the multiple 2 takes care of this uncertainty: 
 
  604 =θ  or 
  604204 ==θ  
 
Now, for next time consider the following:  Do the solutions for 4θ  
always exist?  What if 0222 =−+ GFE ? What if 

0222 <−+ GFE ?  Stay tuned . . . 
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Grashof’s Law 
 

 Grashof was a German Engineer in the late 1800s. Grashof's 
Law is used to determine the relative rotatability of the input and 
output links in a 4-bar mechanism: 

Crank -  full rotation, no limits 
Rocker -  not full rotation, rotates back-and-forth between limits 

 
Mechanism types (input / output  links): 
 
 
 
 
Identify longest, shortest, intermediate 2 links: L, S, P, Q 
 
1)  If   L + S  <  P + Q   Then we call this a Grashof Mechanism and 
there are four different mechanisms and rotation conditions: 
 
Diagrams: 
 
 
 
 
 
 
 
 a) 
 
 b) 
 
 c) 
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2)  If   L + S  >  P + Q Then we call this a Non-Grashof Mechanism 
and the are four different mechanism inversions yield only one 
rotation condition: 
 
 
 
 
3)  If   L + S  =  P + Q Then we call this a Special Grashof 
Mechanism and the four different mechanism inversions yield the 
identical rotation conditions from 1) Grashof Mechanism.  However, 
there is the additional interesting and troublesome feature that the 
mechanism may jump branches!  Centerlines of links can become 
collinear. 
 
Examples 
 
1)  L = 10,  S = 4,  P = 8,  Q = 7   –   demonstrate the 4 possibilities 
 
2)  L = 10,  S = 6,  P = 8,  Q = 7   –   all Double Rockers 
 
3)  L = 10,  S = 5,  P = 8,  Q = 7   –   demonstrate branch jumping 
 
 
Another interesting example:  L = P = 10,  S = Q = 4   
 parallel, locomotive linkage – subject to branch jumping unless 
constrained.  Also, very easy analysis: 
 

µθθ == 42   03 =θ   for all motion!  
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4-Bar Joint Limits 
 

 If Grashof's Law predicts the input link is a rocker, there will be 
rotation limits on the input link.  These joint limits occur when links 
3 and 4 are aligned.  As shown in the figure, there will be two joint 
limits, symmetric about the ground link. 
 

 
 
 To calculate the joint limits, we use the law of cosines: 
 

( ) Lrrrrrr 221
2
2

2
1

2
43 cos2 θ−+=+  

 
( )











 +−+
±= −

21

2
43

2
2

2
11

2 2
cos

rr
rrrr

Lθ  

 
±  by symmetry about 1r  
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Example 1:  Given 7,8,6,10 4321 ==== rrrr  
L + S  >  P + Q (10 + 6  >  8 + 7) 

so we predict only double rockers from this mechanism. 
 

( )
( )( )

[ ] 9.137742.0cos
6102

78610
cos 1

222
1

2 ±=−±=










 +−+
±= −−

Lθ  

 
Example 2:  Given 7,8,4,10 4321 ==== rrrr  

L + S  <  P + Q (10 + 4  <  8 + 7), 
so we predict this mechanism is a crank-rocker.  Therefore, there are 
no joint limits! 
 

( )
( )( )

[ ]3625.1cos
4102

78410
cos 1

222
1

2 −±=










 +−+
±= −−

Lθ  

which is undefined! 
 

Caution:  the figure on the previous page does not apply in all joint 
limit cases.  For certain mechanisms, the limiting conditions occur 
when links 3 and 4 fold upon each other instead of stretching straight 
out.  The previous method can also be used to find angular limits on 
link 4 when it is a rocker; here links 2 and 3 either stretch out in a 
line or fold upon each other.   
 
Example 3:  (Term Example Four-bar) 
Given 7,8,3,18.11 4321 ==== rrrr  (in) and 3.101 =θ , limits are: 

1.1204 =Lθ  (links 2 and 3 stretched in a line) 
5.1724 =Lθ  (links 2 and 3 folded upon each other in a line) 

There are no limits on 2θ  since it is a crank. 
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Slider-Crank Mechanism Position Analysis 
 
 Converts linear motion to rotary or rotary motion to linear via 
connecting rod.  Internal Combustion Engine – explosion drives 
piston (input), output is rotation of drive shaft.  Air Compressor –  
electric motor drives crank (input), piston (output) compresses air.  
Two dead points where piston is at limits.  Use flywheel on crank to 
avoid locking.  Unlike the four-bar mechanism, the four kinematic 
inversions of the slider-crank mechanism yield radically different 
types of motion.  In class we will solve the Air Compressor case 
where the crank is the input and the slider is the output. 
 
Step 1.  Draw the Kinematic Diagram: 
 
 
 
 
 
 
 
 
 
 
 
r2 – input link length   θ2 – input angle 
r3 – coupler link length   θ3 – coupler angle 
h  – slider offset    x  – output displacement 
 
Link 1 is the fixed ground link.  All angles measured in right-hand 
sense from horizontal to link.  x is measured horizontally from the 
origin to the slider/coupler revolute joint location. 
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Step 2.  State the problem: 
 
 
 
 
 
 
Step 3.  Draw the Vector Diagram.  Define all angles in positive 
sense, measured from the right horizontal to the link vector (tail-to-
head).   
 
Vector Diagram:  
 
 
 
 
 
 
 
 
 
 
Step 4.  Derive the Vector-Loop-Closure Equation. Start at one 
point, add vectors tail-to-head until reach a second point.  Write 
equation by starting and ending at same points, but choosing a 
different path. 
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Step 5.  Write XY Components for Vector-Loop-Closure Equation.  
Break one vector equation into its two scalar components (X and Y): 
 
 
 
 
 
 
Step 6. Solve for the Unknowns from the XY Equations.  Two 
coupled nonlinear equations in the two unknowns 3,θx .  We could 
isolate on unknown, square & add, and solve as in the four-bar 
approach.  However, notice that the two XY equations are coupled 
only in 3θ  but not in x.  There a simpler method - solve 3θ  using the 
Y equation only and then solve x from the X equation: 
 
 
 
 
 
 
 
What about trigonometric uncertainty? The inverse sine function is 
double-valued and so there are two valid solution branches.  
Graphically demonstrate the two branches. 
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Full-rotation condition 
 
 For solution to exist for entire motion range (r2 is a crank), 
absolute value of the inverse sine argument must be less than or equal  
1: 
 

1
3

22 ≤
−
r

srh
  223 srhr −≥  

 
 

which must hold for all motion.  The worst case is 902 −=θ , which 
yields 
 

23 rhr +≥  
 
 

This condition was derived assuming positive h; allowing negative h: 
 

23 rhr +≥ . 
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Slider-Crank Mechanism Position Analysis: Term Example 2 
 
Given: 

 

3
8
4

3

2

=
=
=

h
r
r

 in    
2

3

0.102
0.203
0.076

r
r
h

=
=

=

 m 

 
 
Snapshot Analysis (one input angle) 
 
 Given this mechanism and 302 =θ , calculate x and 3θ  for both 
branches.  Results: 

 
 

Branch x (m) 3θ  
Open 0.290 2.7  

Crossed -0.114 8.172  

 
 

These two branch solutions are demonstrated in the figures on the 
following page.  We use the SI system (m). 
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Slider-Crank Example Snapshot, Open Branch 
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Slider-Crank Example Snapshot, Crossed Branch 
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Graphical Solution:  The Slider-Crank position analysis may be 
solved graphically, merely by drawing the mechanism and 
determining the mechanism closure.  This is an excellent method to 
validate your computer results at a given snapshot. 
 
• Place the grounded revolute for the crank at the origin. 
• Draw the line of the slider, offset vertically from the origin by h. 
• Draw the given input link 2 length at the given angle (point A). 
• Draw a circle of radius r3, centered at point A. 
• This circle intersects the slider line in general in two places. 
• Connect the two branches and measure the unknown values. 

 
Graphical Solution Figure: 
 
 
 

 
 
 
 
 
 
 
 
 
Slider Limits 
 The crank will rotate fully if the previously-derived condition is 
met.  The slider reaches its maximum displacement when links 2 and 
3 are aligned straight out and its maximum displacement when link 2 
if folded onto link 3.  We can draw two right triangles representing 
these conditions and easily calculate the x limits to be 

2951.00671.0 ≤≤ x , as seen in the full motion x plot, next page. 
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Full-Range-Of-Motion (F.R.O.M.) Analysis 
 
 A more meaningful result from position analysis is to report the 
position analysis unknowns for the entire range of mechanism 
motion.  The first plot gives x (m), for all 3600 2 ≤≤θ , for Term 
Example 2, right branch only.  The second plot gives 3θ  (deg), for all 

3600 2 ≤≤θ , for the right branch only. 
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Velocity Analysis Introduction 
 
 Velocity analysis is important for kinematic motion analysis.  
Some tasks have timing, rates.  Position analysis must be completed 
first.  Velocity analysis is also required for dynamics:  position, 
velocity, acceleration, dynamics, forces, machine design. Velocity 
analysis is solution of coupled linear equations.  Velocity is the first 
time derivative of the position.  Vector quantity: 
 
 
 
 
 Magnitude of velocity is speed; direction also crucial. Analytical 
velocity analysis: write position vectors, take first time derivatives, 
solve for unknowns.  Units (translational and rotational): 
 
Basic Velocity Derivation  Figure: 
 
 
 
 
 
 
 
 
Most general planar case: Translating and rotating rigid rod with a 
slider on it.  Find the total velocity of point P on the slider.  Express 
the position vector in Cartesian coordinates: 
 

=+= LPP OP  
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The angle is changing with angular velocity:  
 
 
 
Only the planar case is this simple; the spatial rotation case is more 
complicated.  The length of the rod is changing with sliding velocity: 
 
 
 
Product and Chain Rules of Differentiation 
 We’ll need to use the product and chain rules over and over in 
velocity and acceleration analysis derivations. 
 
Product rule: 

 ( )
dt
dyxy

dt
dxxy

dt
d

+=   x, y both functions of time. 

 
Chain rule: 

 ( )( )( )
dt
dx

dx
dftxf

dt
d

=   f is a function of x, which is a function of t. 

 
Example: 

 ( ) ?cos =θL
dt
d  
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Back to basic velocity derivation 
 
First time derivative of position vector: 
 

==
dt
PdV P

P  
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We have just derived the Three-Part Velocity Equation: 
 

LVVV OP ×++= ω  
 
 
 The terms for the Three-Part Velocity Equation can be 
expressed in various ways, summarized below: 
 

 
Vector 

 

 
OV  

 
V  

 
L×ω  

 
Name 

 
 

 
Point O 
Velocity 

 
Sliding 

Velocity 

 
Tangential 
Velocity 

 
 

XY 
Components 

 
 
 

 
 

  

 
 

Magnitude / 
Direction 
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Three-Part Velocity Equation Example: 
Given (instantaneously) L = 2 m, 30=θ , ω = 1 rad/s, 3V L= =  m/s 
(outward), { }3 2 T

OV =  m/s, calculate PV . 
 

( )
( )

cos sin 3 3cos30 2 1 sin30
sin cos 2 3sin30 2 1 cos30

3 2.598 1 4.598
2 1.5 1.732 5.232

OX
P

OY

P

V V L
V

V V L

mV
s

θ ω θ
θ ω θ

+ −  + − 
= =   + + + +   

+ −   
= =   + +   

 

 
 or,   6.965@48.7PV =   m/s 
 
Show magnitude and direction of each velocity component: 

 
Vector 

 
OV  V  L×ω  

Name 
 

Point O 
Velocity 

Sliding 
Velocity 

Tangential 
Velocity 

 
 

XY 
Components 

 
 

 
 

  

 
 

Magnitude / 
Direction 
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Four-Bar Mechanism Velocity Analysis 
 
Velocity Analysis: determination of angular and linear velocities of 
links in a mechanism. Required for complete motion analysis.  Also 
required for further analysis: acceleration, dynamics, forces, machine 
design.  Linear equations result from first time differentiation of 
position equations.  Unique solution for each mechanism branch.  
Position analysis must be complete first.  1-dof mechanism, so one 
velocity input must be given. 
 
Generic Mechanism Velocity Analysis Statement: Given the 
mechanism, complete position analysis, and one dof of velocity input, 
calculate the velocity unknowns. 
 
Four-bar Mechanism Velocity Analysis 
 
Step 1. Position Analysis must first be complete. 
 
 
Step 2.  Draw the Velocity Diagram: 
 
 
 
 
 
 
 
 
 
where iω , i = 2,3,4, is the absolute angular velocity of link i. 01 =ω  
since the ground link is fixed. 
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Step 3.  State the problem: 
 
 
 
 
 
 
Step 4.  Derive the velocity equations.  Take the first time derivative 
of the vector loop closure equations from position analysis, in XY 
component form. 
 
Four-bar mechanism position equations: 
 

2 3 1 4r r r r+ = +  
 

2 2 3 3 1 1 4 4

2 2 3 3 1 1 4 4

r c r c rc r c
r s r s r s r s

+ = +

+ = +
 

 
 
 

First time derivative for velocity equations:  (use chain rule several 
times)  Chain rule: 
 

( ) coscos

sin
sin

i i
i

i

i i

i i

d dd
dt d dt

θ θθ
θ

θθ
θ ω

=

= −

= −

   

( ) sinsin

cos
cos

i i
i

i

i i

i i

d dd
dt d dt

θ θθ
θ

θθ
θ ω

=

=

=

 

 
 Don’t have to use product rule because 0=ir  (rigid links). 
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The first time derivative of the position equations is: 
 
 
 
 
 
 

 
 
Gathering unknowns on the LHS: 

 
 
 
 
 
 
 

Substituting simpler terms: 
 
 
 
 
 
 
 
 

Written in matrix form: 
 
 
 



 70

Step 5.  Solve the velocity equations for the unknowns 43 ,ωω . 
 
Algebra solution: 
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Alternate matrix solution (yields same solution): 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 72

Four-Bar mechanism singularity condition:  
 
 When does the solution fail?  This is a mechanism singularity, 
when the determinant of the coefficient matrix goes to zero.  The 
result is dividing by zero, for infinite answers 43 ,ωω .  Let’s see what 
this means physically. 
 
 
 
 
 
 
 
 
 
 
Physically, this happens when links 3 and 4 are straight out or folded 
on top of each other (what does this correspond to?): 
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 The basic four-bar mechanism velocity analysis problem is now 
solved.  Now that we know the angular unknowns, we can find the 
translational velocity of any point on the mechanism, e.g. coupler 
point C: 
 
 
 
 
 
 
 
 
 



 74

Four-bar mechanism velocity example:  
 
 Given r1 = 0.284, r2 = 0.076, r3 = 0.203, r4 = 0.178, RC/A = 0.127 
m, and 1 10.3θ = , 2 30θ = , 3 53.8θ = , 4 121.7θ = , 3 36.9δ = . This is 
the open branch of the four-bar mechanism position example (Term 
Example 1). 
 
Snapshot Analysis (one input angle) 
 
 Given this mechanism position analysis plus 2ω π=  rad/s (+, so 
ccw), calculate 43,ωω , and  CV  for this instant (snapshot). 
 
 

3

4

0.164 0.151 0.120
0.120 0.093 0.207

ω
ω

− −    
=    − −    

 

 
 

3

4

1.271
0.587

ω
ω

−   
=   −  

 

 
 
Both are negative, so cw direction.  These results are the absolute 
angular velocities of links 3 and 4 with respect to the ground link. 

 
 

Coupler point translational velocity: 
0.042
0.209CV  

=  
 

 (m/s) 
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Full-Range-Of-Motion (F.R.O.M.) Analysis 
 
 A more meaningful result from velocity analysis is to report the 
velocity analysis unknowns for the entire range of mechanism 
motion.  The plot below gives 3ω  (red) and 4ω  (green), (rad/s), for 
all 3600 2 ≤≤θ , for Term Example 1, open branch only.  Since 

2ω  is constant, we can plot the velocity results vs. 2θ  (since it is 
related to time t via t22 ωθ = ). 
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The plot below gives the translational coupler point velocity for all 
3600 2 ≤≤θ , for Term Example 1, open branch only. 
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Derivative/Integral Relationships 
 When one variable is the derivative of another, what are the 
relationships?  For example: 

dt
d 3

3
θω =    ∫+= dt3303 ωθθ  
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The value of 3ω  at any point is the slope of the 3θ  curve at that point. 
The value of 3θ  at any point is the integral of the 3ω  curve up to that 
point (the value of 3θ  at any point is the area under the 3ω  curve up 
to that point). 

This graph is vs. 2θ , but the same type of relationships hold as 
for time t since 2ω  is constant.  This is the Term Example 1 result, 
but we changed 3θ  from deg to rad for better comparison.
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Slider-Crank Mechanism Velocity Analysis 
 
 Again, we will solve the Air Compressor case where the crank is 
the input and the slider is the output.  The Internal Combustion 
Engine case (slider input/crank output) is equally interesting. 
 
Step 1. Position Analysis must first be complete. 
 
 
Step 2.  Draw the Velocity Diagram: 
 
 
 
 
 
 
 
 
 
 
 
where iω , i = 2,3 is the absolute angular velocity of link i. x  is the 
variable slider velocity.  04 =ω  since the slider cannot rotate. 
 
Step 3.  State the problem: 
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Step 4.  Derive the velocity equations.  Take the first time derivative 
of the vector loop closure equations from position analysis, in XY 
component form. 
 
Slider-crank mechanism position equations: 
 

2 3r r x h+ = +      2 2 3 3

2 2 3 3

r c r c x
r s r s h

+ =

+ =
 

 
First time derivative for velocity equations: 

 
 
 
 
 
 

 
Gathering unknowns on the LHS: 

 
 
 
 
 
 
 

Written in matrix form: 
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Step 5.  Solve the velocity equations for the unknowns x,3ω . 
 
 Actually, these equations are decoupled so we don't need a 
matrix solution.  First, solve 3ω  from Y equation: 
 
 
 
 
 
 
 
 
Then solve x  from the X equation using the 3ω  result: 

 
 
 
 
 
 
 
 
 
 
 
 

The alternate matrix solution: 
 
 
 
will yield identical results. 
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Slider-crank mechanism singularity condition:  
 
 When does the solution fail?  This is a slider-crank mechanism 
singularity, when the determinant of the coefficient matrix goes to 
zero.  The result is dividing by zero, resulting in infinite answers 

x,3ω . 
 

3 3 0A r c= =  
 
 

0=A   when  0cos 3 =θ , or  ,270,903 =θ  
 
 
 

Physically, this happens when link 3 is straight up or down 
( 3 90θ = ± ).  Doesn’t happen for nominal full-rotation slider-crank 
mechanisms, even with offsets. 
 
Of course r3 cannot go to zero, otherwise we have a degenerate 
slider-crank mechanism. 
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Slider-crank mechanism velocity example:  
 
 Given r2 = 0.102, r3 = 0.203, h = 0.076 m, and 2 30θ = , 

3 7.2θ = , x = 0.290 m.  This is the right branch of the slider-crank 
position example (Term Example 2). 
 
 
Snapshot Analysis (one input angle) 
 
 Given this mechanism position analysis plus 2 / 2ω π=  rad/s (+, 
so ccw), calculate 3,ωx  for this instant (snapshot). 
 
 

3

1 0.025 0.080
0 0.202 0.138

x
ω

−    
=    −    

 

 

3

0.062
0.686

x
ω

−   
=   −  

 

 
 
Both are negative, so the slider is currently traveling to the left and 
the coupler link is currently rotating in the cw direction.  These 
results are the absolute linear and angular velocities of links 4 and 3 
with respect to the fixed ground link. 
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Full-Range-Of-Motion (F.R.O.M.) Analysis 
 
 A more meaningful result from velocity analysis is to report the 
velocity analysis unknowns for the entire range of mechanism 
motion.  The plot below gives x  (red, m/s) and 3ω  (green, rad/s), for 
all 3600 2 ≤≤θ , for Term Example 2, right branch only.  Since 

2ω  is constant, we can plot the velocity results vs. 2θ  (since it is 
related to time t via t22 ωθ = ). 
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Derivative/Integral Relationships 
 
 When one variable is the derivative of another, what are the 
relationships?  For example: 

dt
dxx =    ∫+= dtxxx 0  
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The value of x  at any point is the slope of the x curve at that point. 
The value of x at any point is the integral of the x  curve up to that 
point (the value of x at any point is the area under the x  curve up to 
that point). 

This graph is vs. 2θ , but the same type of relationships hold as 
for time t since 2ω  is constant.  This is the Term Example 2 result.
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Acceleration Analysis Introduction 
 Acceleration analysis is required for dynamics:  position, 
velocity, acceleration, dynamics, forces, machine design.  Important 
for kinematic motion analysis. Position and velocity analyses must be 
completed first.  Acceleration analysis is solution of linear equations.  
Acceleration is the first time derivative of the velocity and second 
time derivative of the position.  Vector quantity: 
 
 Analytical acceleration analysis: write position vectors, take first 
two time derivatives, solve for unknowns. Units (translational and 
rotational): 
 
 
 
 
 
Basic Acceleration Derivation   Figure: 
 
 
 
 
 
 
 
 
 
 
 
 
Rotating rigid rod with a slider on it.  Find the total acceleration of  
point P on the slider.   
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Recall the 2-part position and 3-part velocity results: 
 

 








+
+

=+=
θ
θ

sin
cos

LP
LP

LPP
OY

OX
OP  

 

 








++
−+

=×++=
θωθ
θωθ

ω
cossin
sincos

LVV
LVV

LVVV
OY

OX
OP  

 
 
 
The angle is changing with angular velocity and acceleration:  
 
 
 
 
 
 
Only planar case is this simple; the spatial rotation case is more 
complicated.  The length of the rod is changing with sliding velocity 
and acceleration: 
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Product and Chain Rules of Differentiation 
 
 Again, we’ll need to use the product and chain rules over and 
over in acceleration analysis derivations. 
 
Product rule: 

 ( )
dt
dyxy

dt
dxxy

dt
d

+=   x, y both functions of time. 

 
Chain rule: 

 ( )( )( )
dt
dx

dx
dftxf

dt
d

=   f is a function of x, which is a function of t. 

 
Example: 

 ( )
2

2 cos ?d L
dt

θ =  
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Back to basic acceleration derivation 
 
First time derivative of velocity vector (Second time derivative of 
position vector): 
 

=== 2

2

dt
Pd

dt
Vd

A PP
P  
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We have just derived the Five-Part Acceleration Equation: 
 
 

( )LLVAAA OP ××+×+×++= ωωαω2  
 
 
These terms can be expressed in various ways, summarized below: 
 
 
Vector 
 

 
OA  

 
A 

 
V×ω2  

 
L×α  

 
( )L×× ωω  

 
Name 
 
 

 
Point O 

Acceleration 

 
Sliding 

Acceleration 

 
Coriolis 

Acceleration 

 
Tangential 

Acceleration 

 
Centripetal 

Acceleration 

 
 
XY 
Components 
 
 

 
 

    

 
 
Magnitude / 
Direction 
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Five-Part Acceleration Equation Example: 
Continuation of 3-part velocity example. 
 
Given (instantaneously) L=2 m, 30=θ , 1ω =  rad/s, 2α =  rad/s2, 

3V L= =  m/s (outward), { }3 2 T
OV = , 4A L= =  m/s2 (outward), 

{ }1 2 T
OA = , calculate PA . 

 
2

2

2

cos 2 sin sin cos
sin 2 cos cos sin

1 3.464 3 2 1.732 2.268
2 2 5.196 3.464 1 11.660

OX
P

OY

A A V L L
A

A A V L L

m
s

θ ω θ α θ ω θ
θ ω θ α θ ω θ

 + − − −
=  

+ + + − 
+ − − − −   

= =   + + + −   

 

 
 or,   11.879@101.0PA =   m/s2 
 
Show magnitude and direction of each Acceleration component: 
 
Vector OA  A V×ω2  L×α  ( )L×× ωω  
Name Point O 

Acceleration 
Sliding 

Acceleration 
Coriolis 

Acceleration 
Tangential 

Acceleration 
Centripetal 

Acceleration 
 
 
XY 
Components 
 
 

 
 

    

 
 
Magnitude / 
Direction 
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Four-Bar Mechanism Acceleration Analysis 
 
Acceleration Analysis -  determination of angular and linear 
accelerations of links in a mechanism. Required for complete motion 
analysis.  Also required for further analysis: dynamics, forces, 
machine design.  Linear equations result from second time 
differentiation of position equations.  Unique solution for each 
mechanism branch.  Position and velocity analyses must be complete 
first.  1-dof mechanism, so one acceleration input must be given. 
 
Generic Mechanism Acceleration Analysis Statement: Given the 
mechanism, complete position and velocity analyses, and one dof of 
acceleration input, calculate the acceleration unknowns. 
 
Four-bar Mechanism Acceleration Analysis 
 
Step 1. Position and Velocity Analyses must first be complete. 
 
Step 2.  Draw the Acceleration Diagram: 
 
 
 
 
 
 
 
 
 
 
where iα , i = 2,3,4 is the absolute angular acceleration of link i. 

01 =α  since the ground link is fixed. 
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Step 3.  State the problem: 
 
 
 
 
 
 
 
Step 4.  Derive the acceleration equations.  Take the first time 
derivative of the four-bar mechanism velocity equations from 
velocity analysis, in XY component form. 
 
Four-bar mechanism velocity equations: 
 

2 2 2 3 3 3 4 4 4

2 2 2 3 3 3 4 4 4

r s r s r s
r c r c r c
ω ω ω
ω ω ω

− − = −

+ =
 

 
 

The first time derivative of the velocity equations is: 
 
 
 
 
 

 
Gathering unknowns on the LHS: 
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Substituting simpler terms: 
 
 
 
 
 
 
 
 

Written in matrix form: 
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Step 5.  Solve the acceleration equations for the unknowns 43,αα . 
 
Matrix solution (Algebra solution yields the same results): 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 95

Four-Bar mechanism singularity condition:  
 
 Same coefficient matrix A as velocity case, so singularity 
condition is identical: 
 

,180,034 =−θθ  
 

This condition is the same problem for position, velocity, and 
acceleration.  At this singularity, there is zero transmission angle µ 
and Link 2 is at a joint limit! 
 
The basic four-bar mechanism acceleration analysis problem is now 
solved.  Now that we know the angular unknowns, we can find the 
translational acceleration of any point on the mechanism, e.g. 
coupler point C: 
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Four-bar mechanism acceleration example:  
 
 Given r1 = 0.284, r2 = 0.076, r3 = 0.203, r4 = 0.178, RC/A = 0.127 
m, and 1 10.3θ = , 2 30θ = , 3 53.8θ = , 4 121.7θ = , 3 36.9δ = ; 2ω π= , 

3 1.271ω = − , 4 0.587ω = −  rad/s.  This is the open branch of the 
position and velocity example (Term Example 1). 
 
Snapshot Analysis (one input angle) 
 
 Given this mechanism position and velocity analysis, plus 

02 =α  rad/s2, calculate 43,αα  for this instant (snapshot). 
 
 

3

4

0.164 0.151 0.877
0.120 0.093 0.589

α
α

− −    
=    − − −    

 

 
 

3

4

0.213
6.030

α
α
   

=   
  

 

 
 

Both are positive, so ccw direction.  These results are the absolute 
angular accelerations of links 3 and 4 with respect to the ground link. 

 
 

Coupler point translational acceleration: 
0.676
0.582CA
− 

=  − 
 m/s2 
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Full-Range-Of-Motion (F.R.O.M.) Analysis 
 
 A more meaningful result from acceleration analysis is to report 
the acceleration analysis unknowns for the entire range of mechanism 
motion.  The plot below gives 3α  (red) and 4α  (green), (rad/s2), for 
all 3600 2 ≤≤θ , for Term Example 1, open branch only.  Since 

2ω  is constant, we can plot the acceleration results vs. 2θ  (since it is 
related to time t via t22 ωθ = ). 
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The plot below gives the translational coupler point acceleration for 
all 3600 2 ≤≤θ , for Term Example 1, open branch only. 
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Derivative/Integral Relationships 
 
 When one variable is the derivative of another, recall the 
relationships from calculus.  For example: 
 

dt
d 4

4
θ

ω =    ∫+= dt4404 ωθθ  

 

dt
d 4

4
ω

α =    ∫+= dt4404 αωω  
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Slider-Crank Mechanism Acceleration Analysis 
 
 Again, we will solve the Air Compressor case where the crank is 
the input and the slider is the output. 
 
Step 1. Position and Velocity Analyses must first be complete. 
 
 
Step 2.  Draw the Acceleration Diagram: 
 
 
 
 
 
 
 
 
 
 
 
where 3,2; =iiα  is the absolute angular acceleration of link i. 04 =α  
since the slider cannot rotate. 
 
Step 3.  State the problem: 
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Step 4.  Derive the acceleration equations.  Take the first time 
derivative of the velocity equations from velocity analysis, in XY 
component form. 
 
Slider-crank mechanism velocity equations: 
 

2 2 2 3 3 3

2 2 2 3 3 3 0
r s r s x
r c r c
ω ω
ω ω

− − =
+ =

 

 
The first time derivative of the velocity equations is: 

 
 
 
 
 

 
Gathering unknowns on the LHS: 

 
 
 
 
 
 
 
 

Written in matrix form: 
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Step 5.  Solve the acceleration equations for the unknowns x,3α . 
 
Actually, these equations are decoupled so we don't need a matrix 
solution.  First, solve 3α  from Y equation: 
 
 
 
 
 
 
Then solve x  from the X equation using the 3α  result: 
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Slider-crank mechanism singularity condition:  
 Same coefficient matrix as velocity case, so singularity 
condition is identical (see the singularity discussion in the slider-
crank velocity section). 
 
 
Slider-crank mechanism acceleration example:  
 
 Given r2 = 0.102, r3 = 0.203, h = 0.076 m, and 2 30θ = , 

3 7.2θ = , x = 0.290 m; and 2 / 2ω π= , 3 0.686ω = −  rad/s, 0.062x = −  
m/s.  This is the right branch of the position and velocity example 
(Term Example 2). 
 
 
Snapshot Analysis (one input angle) 
 Given this mechanism position and velocity analysis plus, 

02 =α  rad/s2, calculate 3,αx  for this instant (snapshot). 
 
 

3

1 0.025 0.312
0 0.202 0.137

x
α

−    
=    − −    

 

 
 

3

0.329
0.681

x
α

−   
=   
  

 

 
 
These results are the absolute linear and angular accelerations of links 
4 and 3 with respect to the fixed ground link. 
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Full-Range-Of-Motion (F.R.O.M.) Analysis 
 
 A more meaningful result from acceleration analysis is to report 
the acceleration analysis unknowns for the entire range of mechanism 
motion.  The plot below gives x  (red, m/s2) and 3α  (green, rad/s2), 
for all 3600 2 ≤≤θ , for Term Example 2, right branch only.  Since 

2ω  is constant, we can plot the velocity results vs. 2θ  (since it is 
related to time t via t22 ωθ = ). 
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 Derivative/Integral Relationships 
 
 When one variable is the derivative of another, recall the 
relationships from calculus.  For example: 
 

dt
dxx =    ∫+= dtxxx 0  

 

dt
xdx =    ∫+= dtxxx 0  
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Input Motion Specification 
 
 Up to this point, for full range of motion we have assumed that 
the input link rotates fully with a given constant input angular 
velocity.  Our input constraints have thus been 3600 2 ≤≤θ , ω2 
constant, and α2 = 0.  This input motion specification is plotted like 
this: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note that we have been plotting calculated results vs. θ2.  Since ω2 is 
constant, we have 2 2tθ ω= , so we could just as well plot all results 
vs. time t, since both θ2 and t increase steadily (linearly). 
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This constant ω2 input specification is fine for mechanisms whose 
input rotates fully and considering steady-state motion only.  Many 
useful mechanisms have input links that do not rotate fully but travel 
between joint limits, starting and stopping at zero angular velocity.  
Why is the previous page’s plots unacceptable in this case? 
 
Simplest change – linear angular velocity starting and stopping at 
zero: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We cannot plot vs. θ2 since it is not increasing linearly – plot vs. t. 
 
What is the weakness of this approach? (Discontinuous acceleration 
function yields infinite jerk at start, middle, and finish.) 
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We can fix this with a trapezoidal input acceleration profile: 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This input motion specification should be fine (trapezoidal input 
torque is often used for industrial robots), but there are many 
different zones to handle – what acceleration profile is similar but 
with a single function? 
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Full-cycloidal function input angle specification 
 

( ) ( )

( ) ( )

( ) ( )

( ) ( )
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Dynamics Introduction 
 
Chart: 
 
 
 
 
 
 
 
 Kinematics:  
 

translational 
 

 
rotational  
 
 

 
 Kinetics:  
 

translational Newton’s 2nd Law:   
  

 
rotational Euler’s equation: 
 
 

 
Dynamics of a single rigid body in the plane 
 Rigid body acted on by a system of forces and moments to 
produce planar motion.  What is the first step in analysis?   Draw . . . 
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Free Body Diagram (FBD) 
 
 Isolate each rigid body and show the forces and moments acting.  
This contains all the info needed to write Newton’s 2nd Law and 
Euler’s equation. 

 
 
 
 
 
 
 
 
 
 
 
 

FBD       Simplified FBD 
 
 
 
 
 
 
 
 
 
 
 
 

MAD (mass-acceleration diagram) 
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Internal and External Forces and Moments 
 
 All internal and external forces and moments must be included 
on the FBD. 
 
External forces/moments: 
 
 
 
 
Internal forces/moments: 
 
 
 
 
 
Write dynamics equations 
 
 Newton’s 2nd Law: 
 
 
 
 Euler’s equation: 
 
 
 
 

GA  is the linear acceleration of center of gravity – same direction as 
R .  Different points in rigid body have different linear accelerations.  
α  angular acceleration of rigid body.  The entire rigid body 
experiences the same α . 
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D’Alembert’s Principle 
 
 Turn dynamics problem into a statics problem by the inclusion 
of a fictitious “inertial force” GAmF −=0  and a fictitious “inertial 

moment” αGIM −=0 .  “Centrifugal force” 2ωmr−  is an example of 
an inertial force; it’s not really a force but an effect of acceleration 
and inertia.  Subtract RHS of equations, then sum to zero as in statics.  
We won’t use this method, just wanted you to know in case you ran 
into it somewhere. 
 
 

0
0

G

O

R mA
R F
− =
+ =

 

 
 
 

0
0

G

O

T r R I
T r R M

α+ × − =
+ × + =
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Two Types of Dynamics Problems 
 
Forward Dynamics: 
 Given the mechanism, external forces and moments, and the 
applied driving force (or torque), find the resulting mechanism 
motion and internal joint forces. 
 
 
Inverse Dynamics: 
 Given the mechanism, external forces and moments, and the 
desired mechanism motion, find the required driving force (or torque) 
and internal joint forces. 
 
 
4-Bar Linkage Forward Dynamics: 
 Given 2τ  and EXTEXT MF , ,  find the motion 432 ,, θθθ ,  

432 ,, ωωω ,  432 ,, ααα   and internal forces ijF .  
 
 
4-Bar Linkage Inverse Dynamics: 
 Given the motion 432 ,, θθθ ,  432 ,, ωωω ,  432 ,, ααα , and 

EXTEXT MF , ,  find 2τ  and internal forces ijF . 
 
 
 
Next lecture:  Newton's 2nd Law and Euler's equation require: 
 
translational: mass  center of gravity 
rotational:   center of gravity mass moment of inertia 
 
   m  PG     IG
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Mass, Center of Gravity, Mass Moment of Inertia 
 

GAmF =∑    αGG IM =∑  
 
 
Translational: mass center of gravity 
Rotational:    center of gravity mass moment of inertia 
 
 
 
Mass 
 
 
 
 
 
 
 
 
 
In Newton’s 2nd Law amF =∑ ,  mass m is the proportionality 
constant.  Mass is measure of translational inertia – resistance to 
change in motion, Newton’s 1st Law.  Mass is also measure of storage 

of translational kinetic energy  2
2
1 mvKET = . 
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Examples for m, CG, IG: 
 
 
 
 
 
 
 

System of particles    General rigid body 
 
 
 
 
 
 

Rectangular rigid body 
 
Mass calculation: 
 
System of particles:  
 
 
 
 
General rigid body: 
 
 
 
 
Rectangular rigid body:  
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Center of Gravity (CG, G) 
 
 Also called center of mass, mass center, centroid 
 
 
 
 
 
CG calculation: 
 
System of particles: 
 
 
 
 
 
 
General rigid body: 
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Rectangular rigid body: 
 
 Using an XY coordinate frame centered at the geometric center. 
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For a homogeneous, regular geometric body, the CG is the geometric 
center. 
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Mass Moment of Inertia (IG) is not the same as Area moment of 
inertia (IG) for beam bending: 
 

2
Ax

y

I y dA= ∫   2
Ay

x

I x dA= ∫  

 
Units: 4

AI m≡  
 
 
Mass Moment of Inertia (IG)  
 
 
 
 
 
In Euler’s equation GZG

M I α=∑ , I is the proportionality constant.  I 
is measure of rotational inertia – resistance to change in motion, 
Newton’s 1st Law.  Also, it is a measure of how hard it is to 
accelerate in rotation about certain axes. I is also measure of storage 

of rotational kinetic energy  21
2R GKE I ω= .   

 
Units: 2

GI kgm≡ . 
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Mass Moment of Inertia IG calculation: 
 
System of particles: 
 
 
 
 
 
 
where ri is the scalar perpendicular distance from the axis to the ith 
particle.  With squaring, all terms will be positive, no there can be no 
canceling like for CG.  If first moment is balanced, second moment 
will be doubled about the CG. 
 
 
General rigid body: 
 
 
 
 
 
 
What is the only term that matters for XY planar motion? 
 
 
 
 
 
 
In the example shown above: 

XXGYYGZZG III >>   also  ZZGZZ II >  
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Rectangular rigid body: 
 Using an XY coordinate frame centered at the CG. 
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Units:  mass times distance squared,  2kgm . 

 
 

Checks with result given in the textbook. 
 
 
How do we find mass moments of inertia in the real-world? 
 
• look up in tables 
• CAD package such as SolidEdge 
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Parallel Axis Theorem 
 The mass moment of inertia through the CG is related to mass 
moments of inertia of parallel axes through different points as 
follows: 
 

 
 

where d is the scalar distance separating the axis of interest from the 
axis through the CG.  Notice ZZGI  is a small as it can get;  any ZZI  
must be greater, due to the term 2md , which is always positive. 
 
 
Parallel axis theorem example: 
 
Rectangular rigid body: 
 

( )

( )

2 2
2 2

2 2 2 2

2 2

2 2

12 4 4

12 4 12 4

3 3

3

ZZ
m b hI b h m

b b h hm

b hm

m b h

 
= + + + 

 
 

= + + + 
 
 

= + 
 

= +

 

 
 
 

Agrees with result given in dynamics textbooks. 
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Single Rotating Link Inverse Dynamics 
 
Generic Mechanism Inverse Dynamics Analysis Statement: 
 Given the mechanism, external forces and moments, and the 
desired mechanism motion, find the required driving force (or torque) 
and internal joint forces. 
 
Single Rotating Link Inverse Dynamics Analysis 
 
Step 1. Position, Velocity, and Acceleration Analyses must first be 
complete. 
 
Step 2.  Draw the Diagrams:  
 
Physical Dynamics Diagram: 
 
 
 
 
 
 
 
 
Free Body Diagram (FBD): 
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Step 3.  State the problem: 
 
 
 
 
 
 
Step 4.  Derive the Newton-Euler Dynamics Equations.   
 
Newton's 2nd Law: 
 
 
 
 
 
 
 
 
Euler's Equation: 
 
 
 
 
 
 
 
 
Count # of unknowns and # of equations: 
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Step 5.  Derive XYZ scalar equations from the vector equations. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Written in matrix form: 
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Step 6.  Solve for the unknowns  
Actually, we don’t need matrix solution; the first two equations 

are decoupled and the solution is straight-forward: 
 
 
 
 
 
 
 
 
 
 
 
 
Step 7.  Calculate Shaking Force and Moment  
 After the inverse dynamics problem is solved, we can calculate 
the vector shaking force and moment, which is the force/moment 
reaction on the ground link due to the mechanism, motion, and 
external loads: 
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Terms for the inverse dynamics equations  
 
 The inverse dynamics problem has been solved analytically for 
the single rotating link.  Now, how do we calculate the various terms 
that appear in the dynamics equations?  These all must be derived 
from given information. 
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Single rotating link inverse dynamics example: 
 
 Given: L = 1 m, h = 0.1 m, m = 2 kg, ω = 100 rad/s, α = 0, 
FE=150 N, 0=Eφ  (constant relative to horizontal), ME=0 Nm. 
 
Calculated terms:  5.012 == Err m  217.0 kgmIGZ =  

 

2500
4330
−=

=

Gy

Gx
A
A

2s
m  

 
 
Snapshot Analysis (one input angle) 
 At  150=θ , given this link, motion, and external force, 
calculate τ,, 1212 YX FF  and SS MF ,  for this instant (snapshot). 
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Full-Range-Of-Motion (F.R.O.M.) Analysis 
 
 A more meaningful result from inverse dynamics analysis is to 
report the unknowns for the entire range of mechanism motion.  The 
plot below gives the required driving torque τ  (Nm, red) for all 

3600 ≤≤θ , assuming the given ω  is constant, for the same 
example from the previous page.  This shows the torque that must be 
supplied by an external DC servomotor to cause the specified motion.  
Also plotted is the average torque (green) τAVG = 0 and the root-
mean-square (RMS) torque value (blue) τRMS = 106.1 Nm. 
 
 

0 50 100 150 200 250 300 350
-150

-100

-50

0

50

100

150

θ  (deg)

τ
 (

N
m

)

Tau (red) with average (green) and rms (blue)
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The plots below give the Shaking Force SF  and CG translational 
acceleration results, respectively, for all 3600 ≤≤θ .  In both plots, 
the X components are red and the Y green. 
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The Shaking Moment SM  is merely the negative of the driving 
torque τ  plot shown previously and hence is not shown separately.  Is 
the static loading (mg) significant? 
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Four-Bar Mechanism Inverse Dynamics 
 
Generic Mechanism Inverse Dynamics Analysis Statement: 
 Given the mechanism, external forces and moments, and the 
desired mechanism motion, find the required driving force (or torque) 
and internal joint forces. 
 
Four-Bar Mechanism Inverse Dynamics Analysis  
 
First, can we simplify and solve the problem link-by-link, like the 
single rotating link? Count # of unknowns and # of equations: 
 
 
 
 
 
 
Step 1. Position, Velocity, and Acceleration Analyses must first be 
complete. 
 
Step 2.  Draw the Diagrams:  
Physical Dynamics Diagram: 
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Free Body Diagrams (FBDs): 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ijF : 
 

ijr : 
 
Step 3.  State the problem: 
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Step 4.  Derive the Newton-Euler Dynamics Equations.   
 
Newton's 2nd Law: 
 
 
 
 
 
 
 
 
 
 
 
 
Euler's Equation: 
 
 
 
 
 
 
 
 
 
 
 
 
Count # of unknowns and # of equations: 
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Step 5.  Derive XYZ scalar equations from the vector equations. 
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Write these equations in matrix/vector form: 
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12 12 32 32 32
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[ ]{ } { }bvA =  

 
Coefficient matrix [A] dependent on geometry (kinematics solutions).  
RHS {b} dependent on inertial terms, gravity, and given external 
forces and moments. 
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Step 6.  Solve for the unknowns  
 
Simultaneous matrix solution: { } [ ] { }bAv 1−=  
 
Actually, using Gaussian elimination is more efficient and robust.   
 
Solution to internal forces and input torque are contained in the 
components of {v}. 
 
 
Step 7.  Calculate Shaking Force and Moment  
 
 After the basic inverse dynamics problem is solved, we can 
calculate the vector shaking force and moment, which is the 
force/moment reaction on the ground link due to the motion: 
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Details for the general four-bar mechanism model  
 
 The inverse dynamics problem has been derived analytically for 
the four-bar mechanism.  Now, how do we calculate the various 
terms that appear in the dynamics equations?  These all must be 
derived from given information.  See Fig. P11-2.  Let us do link 3 
terms (next page).  Here is the general link 3 diagram for these 
derivations: 
 
 



 140

Link 3 details: 
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Figure for Term Example 1 Inverse Dynamics Example starting on 
the next page: 
 
 The coupler link 3 is a rectangle of dimensions 8” x 6” x 0.5”.  
The triangle tip we have been using all along in Term Example 1 is 
actually the CG; of the actual rectangular link for inverse dynamics. 
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Four-bar mechanism inverse dynamics example: 
 This is the mechanism from Term Example 1 (open branch), 
with one crucial difference: the input angular velocity was too low 
for interesting dynamics, so I changed it from 2ω π=  to 2 20ω =  
rad/s. 
 
 Given r1 = 0.284, r2 = 0.076, r3 = 0.203, r4 = 0.178, RG3 = 0.127 
m, and 1 10.3θ = , 2 30θ = , 3 53.8θ = , 4 121.7θ = , 3 36.9δ = ; 

2 20ω = , 3 8.09ω = − , 4 3.73ω = −  rad/s; 2 0α = , 3 8.65α = , 4 244.4α =  
rad/s2.  This is the open branch of the position, velocity, and 
acceleration example (Term Example 1).    
 
 All moving links are wood, with mass density 0.03ρ =  lbm/in3.  
Links 2 and 4 have rectangular dimensions 0.75 by 0.50 by ri (in); 
link 3 has rectangular dimensions 8 by 6 by 0.5 (in), as shown on the 
previous page.  The calculated inertia parameters are 2 0.015m = , 

3 0.327m = , 4 0.036m =  kg and 6
2 7.9 10G ZI −= × , 3

3 1.8 10G ZI −= × , 
5

4 9.5 10G ZI −= ×  kgm2.  All external forces and moments are zero but 
gravity is included. 
 
 
Snapshot Analysis (one input angle) 
 
 At  2 30θ = , given this mechanism and motion, calculate the 
four vector internal joint forces, the driving torque 2τ , and the 
shaking force and moment  ,S SF M  for this instant (snapshot). 
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Solution by Gaussian elimination or:  { } [ ] { }bAv 1−=  
 
 
Snapshot Answer: 
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Full-Range-Of-Motion (F.R.O.M.) Analysis 
 
 A more meaningful result from inverse dynamics analysis is to 
report the unknowns for the entire range of mechanism motion.  The 
plot below gives the required driving torque 2τ  (Nm) for all 

3600 2 ≤≤θ , for the Term Example 1 mechanism, assuming the 
given 202 =ω  rad/s is constant (Remember: this has been changed 
from the πω =2  rad/s in the kinematics examples!).  This plot shows 
the torque (red) that must be supplied in all configurations by an 
external DC servomotor to cause the specified motion.  Also plotted 
is the average torque (green) τ2AVG = 0 and the root-mean-square 
torque value (blue) τ2RMS = 0.36 Nm. 
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 The plots below give the shaking force SF  (N) and shaking 
moment SM  (Nm) results, respectively, for all 3600 2 ≤≤θ . In 
the force plot, the X component is red and the Y green.   
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In the shaking moment plot, there is only the Z component: 
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Slider-Crank Mechanism Inverse Dynamics 
 
This problem is very similar to the four-bar mechanism inverse 
dynamics problem.  In fact, links 2 and 3 are handled identically! 
 
Step 1. Position, Velocity, and Acceleration Analyses must first be 
complete. 
 
Step 2.  Draw the Diagrams:  
Physical Dynamics Diagram: 
 
 
 
 
 
 
 
Free Body Diagrams (FBDs): 
 
 
 
 
 
 
 
 
 
 

ijF : internal force of link i acting on link j 

ijr :  moment arm pointing to link i from the CG of link j 
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Step 3.  State the problem: 
 
 
 
 
 
Step 4.  Derive the Newton-Euler Dynamics Equations.   
 Again, links 2 and 3 are identical so let us focus on link 4, the 
slider.  There are two kinematic constraints on the slider: 
 
 
 
 
Newton's 2nd Law: 
 
 
 
 
 
Euler's Equation: 
 
 
 
 
 
Count # of unknowns and # of equations:  We need an additional 
equation: 
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Step 5.  Derive XYZ scalar equations from the vector equations and 
beam these equations into matrix/vector form.  Substitute the friction 
constraint to eliminate one unknown (F14X); also eliminate one 
equation ( 4 4 4G G ZM I α=∑ ). 
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[ ]{ } { }bvA =  

 
 

Coefficient matrix [A] dependent on geometry (kinematics solutions).  
Always choose proper sign of µ  to be opposite to the current x  
direction.  RHS {b} dependent on inertial and statics terms. 
 
 
Step 6.  Solve for the unknowns  
 Simultaneous matrix solution: 
 

{ } [ ] { }bAv 1−=  
 
Actually, using Gaussian elimination is more efficient and robust.    
Solution to internal forces and input torque contained in the 
components of {v}. 
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Step 7.  Calculate Shaking Force and Moment  
 After the basic inverse dynamics problem is solved, we can 
calculate the vector shaking force and moment, which is the 
force/moment reaction on the ground link due to the motion. 
 
 
 
 
 
 
 
 
Figure for example starting on the next page:  The slider-crank 
mechanism is shown at the starting (and ending) position, with zero 
input angle θ2. 
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Slider-crank mechanism inverse dynamics example: 
 
 This is the mechanism from Term Example 2 (right branch 
only), in this case keeping the low input angular velocity 2 2ω π=  
rad/s so the previous snapshots and full-range-of-motion results still 
apply. 
 
 Given r2 = 0.102, r3 = 0.203, h = 0.076 m, and 2 30θ = , 

3 7.2θ = , x = 0.290 m; and 2 / 2ω π= , 3 0.686ω = −  rad/s, 0.062x = −  
m/s; 2 0α = , 3 0.681α =  rad/s2, 0.329x = −  m/s2. This is the right 
branch of the position, velocity, and acceleration example (Term 
Example 2). 
 
 All moving links are wood, with mass density 03.0=ρ  (lbm/in3).  
Links 2 and 3 have rectangular dimensions 0.75 by 0.50 by ri (in); 
link 4 has rectangular dimensions 0.75 by 0.50 by 3 (in).  The 
calculated inertia parameters are m2 = 0.020, m3 = 0.041, m4 = 0.015,   
(kg) and IG2Z = 1.819e-005, IG3Z = 1.418e-004 (kgm2).  There is a 
constant external force of 1 N acting at the center of the piston, 
directed horizontally to the left; gravity is included but all other 
external forces and moments are zero.  We assume µ = 0.2 
(coefficient of friction between piston and wall); 
 
 
Snapshot Analysis (one input angle) 
 
 At  2 30θ = , given this mechanism and motion, calculate the 
four vector internal joint forces, the driving torque 2τ , and the 
shaking force and moment  ,S SF M  for this instant (snapshot). 
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Solution by Gaussian elimination or:  { } [ ] { }bAv 1−=  
 
 
 
 
Snapshot Answer: 
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 (N) ˆ0.053SM k= −  (Nm) 
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Full-Range-Of-Motion (F.R.O.M.) Analysis 
 
 A more meaningful result from inverse dynamics analysis is to 
report the unknowns for the entire range of mechanism motion.  The 
plot below gives the required driving torque 2τ  (Nm) for all 

3600 2 ≤≤θ , for the Term Example 2 slider-crank mechanism, 
right branch only, assuming the given 2 2ω π=  rad/s is constant.  
This plot shows the torque (red) that must be supplied in all 
configurations by an external DC servomotor to cause the specified 
motion.  Also plotted is the average torque (green) τ2AVG = -0.002 and 
the root-mean-square torque value (blue) τ2RMS = 0.086 Nm. 
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 The plots below give the shaking force SF  (N) and shaking 
moment SM  (Nm) results, respectively, for all 3600 2 ≤≤θ . In 
the force plot, the X component is red and the Y green.   
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 In the shaking moment plot, there is only the Z component: 
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Cam Introduction 
Chapter 8 
Applications 
 
 
 
 
Compared to linkages, easier to design desired motion with cams, but 
much more expensive and difficult to produce. 
 
Cam Classification:  Disk cams with followers 
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Degrees of Freedom Recall a cam joint has two-dof;  allows both 
rolling and sliding. 
 
 
 
 
 
 
 
 
 
 
 
Function Generation 
 The output parameter is a continuous function of the input 
parameter.  With linkages, we can only satisfy a function exactly at a 
finite number of points: 3, 4, or 5, usually.  For example, a 4-bar 
linkage: 

( )24 θθ f=  
 
 
 
 
 
 
With a cam and follower mechanism, we can satisfy function 
generation at infinite points. 
 

( )θfS =   ( )θφ f=  
 

Cam input angle is θ , output is S for reciprocating (translating) and 
φ  (rotating) for oscillating follower. 
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Cam Motion Profiles 
 
 Up to this point, we have been mostly concerned with 
mechanism analysis:  given a mechanism design and its input 
parameters, determine the position, velocity, acceleration, and 
dynamics behavior.  With cams we must consider mechanism 
synthesis for the first time: given the motion requirements (follower 
motion and timing with input angle), design the cam.  The first step is 
to determine a “smooth” cam follower motion profile.  Classification: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
When the motion transitions between different motion functions, we 
must ensure “smooth”  motion. 
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Fundamental Law of Cam Design: 
 
 
 
 
 
 
 
Which means:   
 
 
 
 
 
 
 
 If the Fundamental law of Cam Design is satisfied, the resulting 
dynamic performance will be acceptable for high-speed cam/follower 
operation.  If  not, there will be performance degradation due to 
noise, vibrations, high wear, etc.  Cyclical impulse hammering when 
acceleration is not continuous. 
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S V A J Diagrams 
 
 In synthesis, we are only given total motion range and perhaps 
some timing requirements.  It is the engineer’s job to determine the 
position curves and to match the velocity and acceleration across 
junctions.  Position is automatically matched by shifting axes.  Draw 
S V A J diagrams vs. time to graphically see if the Fundamental Law 
of Cam Design is satisfied for candidate curves.  We can plot vs. time 
or vs. input cam angle θ  (assuming constant angular velocity, 

tωθ = ). 
 
 
Check out Examples  8-1 (terrible) 
      8-2 (bad) 
      8-3 (acceptable) 
 
 
 
Slope of a function is the value of its derivative at a point.  Therefore, 
for continuous velocity and acceleration curves, the slopes of the 
position and velocity curves must match across all junctions.  The 
slope of the acceleration can be discontinuous (leading to finite jumps 
in jerk), but the acceleration itself must be continuous. 
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Generic Cam Follower Motion Profile figure: 
 
 
 
 
 
 
 
 
 
 
Define each separate function so the value is zero at the initial angle, 
which is zero.  Then to put the whole thing together, just shift the θ 
and S axes. 
 
 Match S:  easy, just do it - shift S axes. 
 
 
 Match V: slope of S must match across junctions. 
 
 
 
 
 
 
 Match A: slope of V must match across junctions. 
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Cam Follower Motion Profile Examples  Example 1 
 rise – dwell portion.  Specify Parabolic (constant acceleration) to 
Straight Line (constant velocity) rise, followed by a dwell. 

S: ( ) 2
1011 2

1
θθ Af =  ( ) 2022 θθ Vf =   ( ) 033 =θf  

 
 
V:  
 
 
A:  
 
 
J:  
 
 
 
Match S at junction B: Just shift axis up. 
 
 
Match V at junction B: 
 
 
 
Try to match A at junction B: 
 
 
 
 
Plot on next page. 
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Example 1 Plots 
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Cam Follower Motion Profile Examples  Example 2 
 
 Fix rise portion only.  Specify Half-Cycloidal function 
(sinusoidal in cam angle) to Straight Line (constant velocity) rise. 
 

S: ( ) 







−=

1

1

1

1
111 sin1

β
πθ

πβ
θ

θ Lf  ( ) 2022 θθ Vf =  

 
 
V:  
 
 
A:  
 
 
J:  
 
 
 
Match S at junction B: Just shift axis up. 
 
 
Match V at junction B: 
 
 
 
Match A at junction B: 
 
 
 
Plot on next page. 
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Cam Follower Motion Profile Examples  Example 3 
 
 Specify Full-Cycloidal function (sinusoidal in cam angle).  This 
will rise all the way to meet a dwell smoothly; it satisfies the 
Fundamental Law of Cam Design. 
 
 

S: ( ) 1 1
1 1 1

1 1

1 2sin
2

f L θ πθθ
β π β

 
= − 

 
   ( )2 2 0f θ =  

 
 

V:  ( ) 1 1
1 1

1 1

21 cosLv πθθ
β β
 

= − 
 

    ( )2 2 0v θ =  

 
 

A:  ( ) 1 1
1 1 2

1 1

2 2sinLa π πθθ
β β

 
=  

 
    ( )2 2 0a θ =   

 
 

J:  ( )
2

1 1
1 1 3

1 1

4 2cosLj π πθθ
β β

 
=  

 
    ( )2 2 0j θ =   

 
 
 
 
 
 
Plot on next page. 
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Analytical Cam Synthesis 
 

Disk Cam with Radial Flat-Faced Follower 
 
 Assume a valid cam motion profile has been designed according 
to the Fundamental Law of Cam Design; i.e. we now have continuous 
S, V, A curves.  Given the motion profile, determine the cam contour. 
 
Is it as simple as polar plotting of ( )θfS =  vs. cam angle θ ? 
 
 
We will use kinematic inversion to simplify the synthesis. 
 
DCRFFF Figure: 
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As seen in the figure, the radius R out to the flat-faced follower (not 
to the point of contact (x,y)) is: 
 
 
 
 
 
where C is the minimum cam radius, a design variable, and ( )θfS =  
is the given motion profile.  The radius R and the flat-face length L 
can be related to the contact point x,y and the cam angle through 
geometry: 
 
 
 
 
 
 
 
Notice that: 
 
 
 
 
 
 
 
 
 
 
To calculate the follower flat-face length, double the maximum of L 
from above.  Doubled because by symmetry the contact point will 
change to the other side at 180=θ . 
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To summarize thus far: 
 
 
 
 
 
 
This is sufficient to manufacture the cam; it is machined with θ, R, L 
coordinates.  If we want to know the cam contour in Cartesian 
coordinates, we must solve the relationships for x, y.  In matrix form: 
 
 
 
 
 
 
 
 
The coefficient matrix [A] is orthonormal, which means [ ] [ ]TAA =−1 .  
The solution is: 
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Minimum Cam radius to Avoid Cusps 
 A cusp is a point in the cam, or actually undercut; this is to be 
avoided for good motion.  The condition is that for a finite θ∆ , there 
is no change in x, y: 

0==
θθ d

dy
d
dx      will cause a cusp. 

 

( )( )

( )( ) θ
θ

θ
θ

θ
θ

θθ
θ

θ
θ

θ
θ

θ
θ

θθ
θ

cossinsincos

sincoscossin

2

2

2

2

d

fd
d
df

d
dffC

d
dy

d

fd
d
df

d
dffC

d
dx

+−++=

−−++−=
 

 

( )

( ) θ
θ

θ
θ

θ
θ

θ
θ

cos

sin

2

2

2

2











++=











++−=

d

fdfC
d
dy

d

fdfC
d
dx

 

0==
θθ d

dy
d
dx  simultaneously only when: 

( ) 02

2
=++

θ
θ

d

fdfC  

 
Therefore, to avoid cusps on the entire cam contour,  

( ) 02

2
>++

θ
θ

d

fdfC  

 
Note C is always positive and ( )θf  starts and ends at zero and never 
goes negative. 
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Disk Cam with Radial Flat-Faced Follower Design Example 
 
 Specify a full-cycloidal rise (total lift 50 mm), followed by a 
high dwell, a full-cycloidal return (total fall 50 mm), and then a low 
dwell.  Each of these four motion steps occurs for 90 deg of cam 
shaft rotation. 
 
 The cam motion profile associated with this specification is 
shown below.  Clearly, this satisfies the Fundamental Law of Cam 
Design because the position, velocity, and acceleration curves are 
continuous.  The jerk is not continuous, but it remains finite over all 
cam angles. 
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 Choosing a minimum cam radius of C = 100 mm), the resulting 
cam contour is shown below. 
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Let us check the cusp avoidance plot.  To avoid cusps in this cam, 
we require that: 
 

( ) ( ) ( ) 0
2

2
>++=++

θ
θθθ

d

fd
fCASC  

 
As seen in the plot below, this inequality is satisfied for the entire 
range of motion, so this cam design is acceptable. 
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Gear Introduction 
 
 Transfer motion between rotating shafts in machinery, vehicles, 
toys, etc.  Gears used in electromechanical systems.  Change in 
angular velocity, torque, direction.  Can openers to Aircraft carriers.  
Related mechanisms - belt and chain drives. 
 
Applications: 
 
 
 
 
 
 
 
 
Gear Classification 
 

   
External Spur Gears       Internal Spur Gears 
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Rack & Pinion      Bevel gears 

 

     
Helical (Parallel Shaft)    Helical (Crossed Shaft) 

 

   
Herringbone Gears     Gear Train 
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Automotive Differential    Planetary Gear Train 

 

    
Worm and Gear    Harmonic Gearing 
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Harmonic Gearing 
 
Taken from: http://www.roymech.co.uk/ 
 
 “The harmonic gear allows high reduction ratios with concentric 
shafts and with very low backlash and vibration.  It is based on a very 
simple construction utilising metals elasto-mechanical property.” 
 
 “Harmonic drive transmissions are noted for their ability to 
reduce backlash in a motion control system.   How they work is 
through the use of a thin-walled flexible cup with external splines on 
it lip, placed inside a circular thick-walled rigid ring machined with 
internal splines.   The external flexible spline has two fewer teeth 
than the internal circular spline.   An elliptical cam enclosed in an 
antifriction ball bearing assembly is mounted inside the flexible cup 
and forces the flexible cup splines to push deeply into the rigid ring at 
two opposite points while rotating. The two contact points rotate at a 
speed governed be the difference in the number of teeth on the two 
splines    This method basically preloads the teeth, which reduces 
backlash.” 
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Gear Ratio 
 
 Common electric motors have high speed but low torque.  A 
robot joint needs lower rotation speed but high torque.  A gear train 
can accomplish both objectives – reduce speed and increase torque.  
Gear ratio is a measure of the degree of reduction and increase. 
 
Simple spur gear pair: 
 
 
 
 
 
 
DOF: 
 
 
 
 
A gear joint is like a cam joint; two-dof, teeth in contact allow rolling 
and sliding. 
 
 
Gear 1 is input, gear 2 is output.  Like two cylinders rolling without 
sliding.  Arc lengths are equal. 
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Define gear ratio n:  
 
 
 
 
   
Radii inversely proportional to angular motion.  For standard spur 
gears, the radii are directly proportional to the number of teeth: 
 
 
 
 
 
 
 
For relating angular velocities, tangential velocities are equal. 
 
 
 
 
 
 
 
Most gear applications have constant angular velocities, for 
accelerating up to (or down from) constant angular velocities:   
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For relating shaft torques, interface forces are equal. 
 
 
 
 
 
 
 
 
Radii directly proportional to shaft torques 
 
 
 
 
 
 
 
 
Summary: 
 

 
 
 
 
 
 
 
 

The ratio of the number of teeth is directly proportional to the radii, 
diameter, and shaft torques.  The ratio of the number of teeth is 
inverse proportional to the shaft angles, angular velocities, and 
angular accelerations.  
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 If  1>n : 12 ωω <   Output has reduced speed 
   12 ττ >   Output has increased torque 
 
This is the electric motor / robot joint case. 
 
 
 
 If  1<n : 12 ωω >   Output has increased speed 
   12 ττ <   Output has reduced torque 
 
 
 
 If  1=n : 12 ωω =   Output speed and torque unchanged 
   12 ττ =   direction reverses (external spur gears) 
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Gear ratio examples  1.  Gear toy 
 

 
2.  Mountain Bike Transmission 

 
 

Gear Ratios: 
F

R

R

F

F

R

IN

OUT
N
N

N
N

n
τ
τ

ω
ω

====  

 
 
Schwinn   Front  

Sierra  48 38 28 
 14 0.29 0.37 0.50 
 16 0.33 0.42 0.57 

Rear 18 0.38 0.47 0.64 
 22 0.46 0.58 0.78 
 26 0.54 0.68 0.93 
 30 0.62 0.79 1.07 

 
 
 
Unlike electric motor example, mountain bike gearing generally: 

• increases angular velocity 
• decreases torque 
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Cannondale   Front  

M400  44 32 22 
 11 0.25 0.34 0.50 
 12 0.27 0.38 0.54 

Rear 14 0.32 0.44 0.64 
 16 0.36 0.50 0.73 
 18 0.41 0.56 0.82 
 21 0.48 0.66 0.95 
 24 0.54 0.75 1.09 
 28 0.64 0.88 1.27 
 32 0.73 1.00 1.45 

 
 
 

BikeE Front 34  Rear hub  
recumbent  1.2913:1 1:1 0.7:1 

 11 0.25 0.32 0.46 
 13 0.30 0.38 0.55 

Rear 15 0.34 0.44 0.63 
 18 0.41 0.53 0.76 
 21 0.48 0.62 0.88 
 24 0.55 0.70 1.01 
 28 0.64 0.82 1.18 

 
But considering the difference in wheel sizes (26” Cannondale, 20” 
BikeE), the effective BikeE high and low gear ratios are: 
Stiff: 0.32 instead of 0.25 
Granny 1.53 instead of 1.18 
 
Original front was 46 teeth – changed for more granny gear.
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Gear Trains and Gear Standardization 
 

Simple Gear Trains 
 
 Mesh any number of spur gears.  Leftmost is driving gear.  
Rightmost is the output gear.  All intermediate gears are first the 
driven gear and then the driving gear as we proceed from left to right.  
Let us calculate the overall gear ratio. 
 

 
OUT

IN
GTn

ω
ω

=   Example:  

 
 
 
 
 
 

We can find the overall gear ratio by canceling neighboring 
intermediate angular velocities: 
 
 
 
 
 
 
Each term in the above product may be replaced by its known 
number of teeth ratio: 
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All intermediate ratios cancel, so: 
 
 
 
 
 
 
 
We could have done the same with pitch radii instead of number of 
teeth because they are in direct proportion: 
 
 
 
 
 
 
 
So, the intermediate gears are idlers.  Number of teeth effect cancels 
out, but do change direction!  We should have included sign: 
 
 
 
 
 
 
 
So, for external spur gear trains: 

Odd # of gears:  Output same direction as input 
 Even # of gears:  Output opposite direction as input 
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Different case: 
 Mesh any number of spur gears, where the driving and driven 
gears are distinct, because each pair is rigidly attached to the same 
shaft. See the figure.  Again, let us calculate the overall gear ratio. 
 

 
OUT

IN
GTn

ω
ω

=   Example: 

 
 
 
 
 
 

 
Again, we use the equation: 
 

 
 
 
 
 
 
 

But now the gears rigidly attached to the same shaft have the same 
angular velocity ratio, so: 
 

 
 
 
 



 

 

188

General formula: 
 
 
 
 
 
 
 
 

Again, we must consider direction: 
 
 
 
 
 
 
 

 
So, for external spur gear trains: 

Odd # of pairs:  Output opposite direction as input 
 Even # of pairs:  Output same direction as input 
 
 



 

 

189

Involute Spur Gear Details and Standardization 
 
Rolling Cylinders 
 Mating spur gears are based on two pitch circles rolling without 
slip.  These are fictitious circles; you cannot look on a gear to see 
them.  The actual gear teeth both roll and slide (two-dof joint). 
 
 
 
 
 
 
Fundamental Law of Gearing: 
 
 
 
 
 From our study of linkage velocity, we know this is no easy feat.  
Velocity ratios in a linkage vary wildly over the range of motion. 
 
 Velocity Ratio 
 
 
 
 Torque Ratio (Mechanical Advantage)  
 
 
 
 The author’s velocity ratio is the inverse of our gear ratio 
definition and his torque ratio is the same as our gear ratio. 



 

 

190

Involute Function 
 
 Standard spur gears have an involute tooth shape.  If the gears’ 
center distance is not perfect (tolerances, thermal expansion, wear, 
etc.), the angular velocity ratio will still be constant to satisfy the 
Fundamental Law of Gearing.  The involute is a curve generated by 
unwrapping a taut sting from a circle: 
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 Base Circle:  Involute starts from this circle 
 
 Pitch Circle:  Fictitious circle, pure rolling in contact 
 
 Pitch Point:  Contact point between the two pitch circles 
 
 Pressure Angle: Angle between the common normal (also 
called axis of transmission) of the two meshing teeth and the velocity 
of the pitch point (tangent to both pitch circles).  Point of contact 
slides along this line.  Similar angle is defined for cams and 
followers. 
 
 Base circle, pitch circle, pressure angle relationship: 
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 Length of contact along axis of transmission.  Beginning of 
contact is when tip of driven gear tooth intersects the axis of 
transmission. End of contact is when tip of driving gear (pinion) tooth 
intersects the axis of transmission.  Only one or two teeth are in 
contact at any one time.  For harmonic gearing, many teeth are in 
contact at any one time (higher gear ratio in a smaller package). 
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 Increasing center distance increases the pressure angle, increases 
the pitch circle radii, but doesn’t change the base circles (of course).  
Thanks to the involute tooth shape, does not affect angular velocity 
ratio. 
 
 
How is this possible?  Relationship from last page: 
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Backlash 
 
 Clearance.  Distance between mating teeth measured along the 
pitch circle circumference.  All real gears must have some backlash 
due to tolerances, thermal expansion, wear, etc.  However, must 
minimize backlash for smooth operation.  Example: robot joints 
which must be driven both directions.  Changing direction, nothing 
happens until the backlash is moved, and then impact - bad for 
dynamics.  Non-linear effect in robots.  On earth gravity tends to load 
the backlash for predictable effects.  In space however, the backlash 
is less predictable!  Figure: 
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Gear Standardization 
 
 To allow interchangeability in manufacturing and to allow 
meshing of different size gears (radii and number of teeth) to achieve 
desired gear ratios.  For two spur gears to mesh, must have:  1) the 
same pressure angle;  2) same diametral pitch;  and  3) be made with 
standard tooth proportions (Table 9-1, p. 441). 
 
 
 Diametral Pitch: 
 
 
 
 Module: 
 
 
 
 Module is the metric version of diametral pitch.  Not 
interchangeable with US gears because different tooth proportion 
standards! 
 
 
 Circular Pitch:  
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 Standard involute tooth proportions, see Table 9-1, p. 441.  
Addendum is radial distance from pitch circle to Top Land of tooth.  
Dedendum is radial distance from pitch circle to Bottom Land of 
tooth (not to base circle).  Clearance is radial distance from Bottom 
Land to mating gear Top Land (kinda like radial backlash).  Face 
width is thickness of tooth and gear (mating widths needn’t be the 
same).  Tooth thickness is the circumferential length of each tooth..  
Related to the circular pitch and backlash by: 
 

 


